精英家教网 > 高中数学 > 题目详情
20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,直线y=x+1经过椭圆C的左焦点.
(I)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(其中O为坐标原点),求实数t的取值范围.

分析 ( I)直线y=x+1与x轴交点为(-1,0),即椭圆的左焦点,可得c=1.又$e=\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,b2=a2-c2.即可得出.
(Ⅱ)由题意知直线AB的斜率存在.设直线ABd的方程:y=k(k-2),与椭圆方程联立可得:(1+2k2)x2-8k2x+8k2-2=0.利用△>0,解得k2$<\frac{1}{2}$.设A(x1,y1),B(x2,y2),P(x,y).利用根与系数的关系及$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$,可得P坐标,代入椭圆方程即可得出.

解答 解:( I)直线y=x+1与x轴交点为(-1,0),即椭圆的左焦点,∴c=1.
又$e=\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,∴a=$\sqrt{2}$,b2=a2-c2=1.
故椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(Ⅱ)由题意知直线AB的斜率存在.
设直线ABd的方程:y=k(k-2),
联立$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,化为:(1+2k2)x2-8k2x+8k2-2=0.
△=64k4-4(1+2k2)(8k2-2)>0,解得k2$<\frac{1}{2}$.
设A(x1,y1),B(x2,y2),P(x,y),
则x1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$,
∴x1+x2=tx,y1+y2=ty.
x=$\frac{{x}_{1}+{x}_{2}}{t}$=$\frac{8{k}^{2}}{t(1+2{k}^{2})}$,
y=$\frac{{y}_{1}+{y}_{2}}{t}$=$\frac{1}{t}[k({x}_{1}+{x}_{2})-4k]$=$\frac{-4k}{t(1+2{k}^{2})}$.
∵点P在椭圆上,∴$\frac{(8{k}^{2})^{2}}{{t}^{2}(1+2{k}^{2})^{2}}$+2$\frac{(-4k)^{2}}{{t}^{2}(1+2{k}^{2})^{2}}$=2,
∴16k2=t2(1+2k2),
k2$<\frac{1}{2}$,
∴t2=$\frac{16{k}^{2}}{1+2{k}^{2}}$=$\frac{16}{\frac{1}{{k}^{2}}+2}$$<\frac{16}{2+2}$=4,
解得-2<t<2.,
∴t的取值范围是为(-2,2).

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、向量坐标运算、不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2-x(4x-m)是奇函数,g(x)=lg(10x+1)+nx是偶函数.
(I)求m+n的值;
(Ⅱ)设h(x)=$\left\{\begin{array}{l}{f(x)+1,x≤0}\\{g(x)+\frac{1}{2}x,x>0}\end{array}\right.$,试求h(x)在x∈[-2,1]时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e∈[$\sqrt{2}$,2],则其渐近线的倾斜角的取值范围是(  )
A.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{3π}{4}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$]C.[$\frac{π}{6}$,$\frac{π}{4}$]∪[$\frac{4π}{3}$,$\frac{5π}{6}$]D.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E的中心在原点,焦点在坐标轴上,且经过两点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆E的标准方程;
(2)设F为椭圆的右焦点,过点F作斜率为1的直线l交椭圆于AB两点,以AB为直径的圆O交y轴于P、Q两点,劣弧长PQ记为d,求$\frac{d}{|AB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:3x2+4y2=12和点Q(4,0),直线l过点Q且与椭圆C交于A、B两点(可以重合).
(Ⅰ)若∠AOB为钝角(O为原点),试确定直线l的斜率的取值范围;
(Ⅱ)设点A关于长轴的对称点为A1,F为椭圆的右焦点,试判断A1和F,B三点是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E,若AB=8,DC=4,则DE=(  )
A.$\sqrt{2}$B.2C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知F1,F2分别是椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{m}$=1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1⊥PF2
(Ⅰ)求m的值;
(Ⅱ)求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若点A(0,-1),点B在直线y=-3上,点M满足,$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,$\overrightarrow{MB}$∥$\overrightarrow{OA}$,点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)点P为曲线C上的动点,直线l为曲线C在点P处的切线,求O到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=2,则正三棱锥A-BCD的体积是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案