精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且

(1)若函数在区间上是减函数,求实数的取值范围;

(2)设函数,当时,恒成立,求的取值范围.

【答案】(1);(2).

【解析】

试题分析:(1)因为函数在区间上是减函数,则恒成立,转化为二次函数恒成立问题,得解;(2)令恒成立等价于恒成立,利用导数讨论的单调性求最值.

试题解析:(1)因为函数在区间上是减函数,则

上恒成立

时,令

,则,解得,则,解得

综上,实数的取值范围是

(2)令,则

根据题意,当时,恒成立.

所以

时,时,恒成立,

所以上是增函数,且,所以不符合题意

时,时,恒成立.

所以上是增函数,且,所以不符题意.

时,时,恒有,故上是减函数,

于是对任意都成立的充要条件是

,解得,故

综上,的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,是棱上的一点,分别为的中点.

1求证:平面

2的中点时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最大值;

2)函数轴交于两点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,,在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.

1求曲线的普通方程,并将的方程化为极坐标方程;

2直线的极坐标方程为,其中满足,若曲线的公共点都在上,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球定点投篮训练中,规定每人最多投3次.在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在处的投中率,在处的投中率为.该同学选择先在处投一球,以后都在处投,且每次投篮都互不影响.用表示

该同学投篮训练结束后所得的总分,其分布列为:

0

2

3

4

5

0.03

(1)求的值;

(2)求随机变量的数学期望

(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A. 年收入平均数大大增大,中位数一定变大,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,其中的中点.

(1)求证:

(2)求证:面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线上的一动点,过点作圆的切线,切点为

(1)当切线的长度为时,求点的坐标;

(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段长度的最小值.

查看答案和解析>>

同步练习册答案