精英家教网 > 高中数学 > 题目详情
如图四面体ABCD中,O,E分别是BD,BC的中点,CA=CB=CD=BD=2,AB=AD=
2

(1)求证:直线BD⊥平面AOC
(2)求点E到平面ACD的距离.
(1)证明:连接OC,∵BO=DO,AB=AD,
∴AO⊥BD,
∵BO=DO,BC=CD,∴CO⊥BD.
∵AO⊥BD,CO⊥BD,AO∩OC=O,
∴直线BD⊥平面AOC.(6分)
(2)设点E到平面ACD的距离为h.
∵VE-ACD=VA-CDE,∴
1
3
h.S△ACD=
1
3
•AO•S△CDE.…(9分)
在△ACD中,CA=CD=2,AD=
2

∴S△ACD=
1
2
×
2
×
4-(
2
2
)2
=
7
2

∵AO=1,S△CDE=
1
2
×
3
4
×22=
3
2

∴h=
AO•S△CDE
S△ACD
=
3
2
21
7
=
21
7

∴点E到平面ACD的距离为
21
7
.(6分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知两个正方形ABCDDCEF不在同一平面内,MN分别为ABDF的中点。
(I)若CD=2,平面ABCD⊥平面DCEF,求直线MN的长;
(II)用反证法证明:直线MEBN是两条异面直线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四面体ABCD中,AB=BC==CD=DB,点A在面BCD上的射影恰是CD的中点,则对棱BC与AD所成的角等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线平面,过平面外一点都成角的直线有且只有(     )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二面角α-PQ-β为60°,点A和B分别在平面α和平面β内,点C在棱PQ上∠ACP=∠BCP=30°,CA=CB=a.
(1)求证:AB⊥PQ;
(2)求点B到平面α的距离;
(3)设R是线段CA上的一点,直线BR与平面α所成的角为45°,求CR的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60,
(1)求点A到平面PBD的距离的值;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方形ABCD的边长为a,MA⊥平面ABCD,且MA=a,试求:
(1)点M到BD的距离;
(2)AD到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABC-A1B1C1中,四边形AA1B1B是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=1,AB=2,∠A1AB=60°.
(1)求证:平面CA1B⊥平面A1ABB1
(2)求B1C1到平面A1CB的距离;
(3)求直线A1C与平面BCC1B1所成角的正切值.

查看答案和解析>>

同步练习册答案