精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)当a=1,b=2时,求函数f(x)(x≠1)的值域,
(2)当a=0时,求f(x)<1时,x的取值范围.

【答案】
(1)解:∵当a=1,b=2时,f(x)= =x﹣1+ +5,(x≠1)

当x>1时,即x﹣1>0.

∴f(x)=x﹣1+ +5≥2 +5=2+5=7

当且仅当x﹣1= ,即x=2时取等号

当x<1.

f(x)=x﹣1+ +5=5﹣[﹣(x﹣1)﹣ ]≤﹣2 +5=﹣2+5=3

当且仅当﹣(x﹣1)=﹣ ,即x=0时取等号

所以函数f(x)的值域(﹣∞,3]∪[7,+∞)


(2)解:当a=0时,f(x)= <1,即 <0,(bx﹣2)(x﹣1)<0

①当b=0时,解集为{x|x>1}…(8分)

②当b<0时,解集为{x|x>1或x< }

③当 =1,即b=2,解集为

④当 >1,即0<b<2时,解集为{x|1<x< }

⑤当0< <1,即b>2时,解集为{x| <x<1}


【解析】(1)根据分式的性质,利用分子常数化,转化为基本不等式进行求解即可.(2)将分式不等式转化为一元二次不等式,讨论参数b的取值范围进行求解即可.
【考点精析】根据题目的已知条件,利用函数的值域的相关知识可以得到问题的答案,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,且ab≠0,则下列结论恒成立的是( )
A.a+b≥2
B.a2+b2>2ab
C.+ ≥2
D.| + |≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),则cx2+bx+a<0的解集是(
A.(﹣3,
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2,
D.(﹣∞,﹣2)∪( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
(1)函数y=tanx在定义域内单调递增;
(2)若α,β是锐角△ABC的内角,则sinα>cosβ;
(3)函数y=cos( x+ )的对称轴x= +kπ,k∈Z;
(4)函数y=sin2x的图象向左平移 个单位,得到y=sin(2x+ )的图象.
其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 )的左右焦点分别为 ,下顶点为,直线的方程为.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设为椭圆上异于其顶点的一点, 到直线的距离为,且三角形的面积为.

(1)求椭圆的方程;

(2)若斜率为的直线与椭圆相切,过焦点 分别作 ,垂足分别为 ,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]D,使f(x)在[a,b]上的值域为[a,b],则把y=f(x),x∈D叫闭函数.
(1)求闭函数y=x3符合条件②的区间[a,b];
(2)判断函数f(x)= x+ ,(x>0)是否为闭函数?并说明理由;
(3)已知[a,b]是正整数,且定义在(1,m)的函数y=k﹣ 是闭函数,求正整数m的最小值,及此时实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:

总计

走天桥

40

20

60

走斑马线

20

30

50

总计

60

50

110

,算得
参照独立性检验附表,得到的正确结论是(
A.有99%的把握认为“选择过马路的方式与性别有关”
B.有99%的把握认为“选择过马路的方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m﹣3,m+3),则实数c的值为(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A、B、C的对边分别为a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

同步练习册答案