精英家教网 > 高中数学 > 题目详情
9.已知角α满足,sin(α+$\frac{π}{4}$)=$\frac{1}{3}$,sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,则tanα=7.

分析 利用两角和与差的正弦函数公式化简已知可求sinα,cosα,利用同角三角函数基本关系式即可解得tanα的值.

解答 解:∵sin(α+$\frac{π}{4}$)=$\frac{1}{3}$,sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,
∴$\frac{\sqrt{2}}{2}$(sinα+cosα)=$\frac{1}{3}$,$\frac{\sqrt{2}}{2}$(sinα+cosα)=$\frac{1}{4}$,解得:sinα+cosα=$\frac{\sqrt{2}}{3}$,sinα-cosα=$\frac{\sqrt{2}}{4}$,
∴联立解得:sinα=$\frac{7\sqrt{2}}{24}$,cosα=$\frac{\sqrt{2}}{24}$,
∴tanα=$\frac{sinα}{cosα}$=7.
故答案为:7.

点评 本题主要考查了两角和与差的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-3x2-12x+5.
(Ⅰ)求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数y=f(x)在[0,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l:4x-3y+6=0,抛物线x=$\frac{1}{4}{y^2}$上一动点P到y轴和直线l的距离之和的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(a)=($\sqrt{\frac{1-sinα}{1+sinα}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$)cos3α+2sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)(α为第三象限角).
(Ⅰ)若tanα=3,求f(α)的值;
(Ⅱ)若f(α)=$\frac{14}{5}$cosα,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知点D为AB边的中点,点N在线段CD上,且$\overrightarrow{CN}$=2$\overrightarrow{ND}$,若$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ$\overrightarrow{AB}$,则λ=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数中,表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)
C.y=logax2和y=2logaxD.y=x和y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x>1},B={x|-1<x<2},则A∩B=(  )
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${({\sqrt{2}x-\frac{1}{x^2}})^3}$的展开式中常数项为(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点与抛物线y2=8x的焦点相同,且经过点(2,3).
(Ⅰ)求双曲线C的标准方程和其渐近线方程;
(Ⅱ)设直线l经过点(0,-1),且斜率为k.求直线l与双曲线C有两个公共点时k的取值范围.

查看答案和解析>>

同步练习册答案