【题目】已知函数,且,对任意实数,成立.
(1)求函数的解析式;
(2)若,解关于的不等式;
(3)求最大的使得存在,只需,就有.
【答案】(1);(2时,;时,;时,;(3)
【解析】
(1)根据和联立求解得到答案.
(2)讨论,和三种情况,分别计算得到答案.
(3)假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x.那么当x=1时也成立确定出t的范围,然后研究当x=m时也应成立,利用函数的单调性求出m的最值.
(1),恒成立,则 且
即
(2)即
当时:解得;当时:
故当时:,不等式无解;
故当时:,不等式解为
综上所述:时,;时,;时,
(3)假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
取x=1,有f(t+1)≤1,即(t+1)2(t+1)1,解得﹣4≤t≤0,
对固定的t∈[﹣4,0],取x=m,有f(t+m)≤m,即(t+m)2(t+m)m.
化简有:m2﹣2(1﹣t)m+(t2+2t+1)≤0,解得1﹣tm≤1﹣t,
故m≤1﹣t1﹣(﹣4)9
当t=﹣4时,对任意的x∈[1,9],
恒有f(x﹣4)﹣x(x2﹣10x+9)(x﹣1)(x﹣9)≤0.
∴m的最大值为9.
科目:高中数学 来源: 题型:
【题目】已知数列与满足.
(1)若,求数列的通项公式;
(2)若且数列为公比不为1的等比数列,求q的值,使数列也是等比数列;
(3)若且,数列有最大值M与最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是奇函数(其中)
(1)求实数m的值;
(2)已知关于x的方程在区间上有实数解,求实数k的取值范围;
(3)当时,的值域是,求实数n与a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左,右焦点分别为,且与短轴的一个端点Q构成一个等腰直角三角形,点P()在椭圆上,过点作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆于A,B,C,D且M,N分别是弦AB,CD的中点
(1)求椭圆的方程
(2)求证:直线MN过定点R()
(3)求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面向量,设函数(为常数且满足),若函数图象的一条对称轴是直线.
(1)求的值;
(2)求函数在上的最大值和最小值:
(3)证明:直线与函数的图象不相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足.
(1)若,求数列的通项公式;
(2)若且数列为公比不为1的等比数列,求q的值,使数列也是等比数列;
(3)若且,数列有最大值M与最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是公差为的等差数列,是公比为的等比数列.
(1)若,是否存在,有?请说明理由;
(2)若(、为常数,且)对任意,有,试求出、满足的充要条件;
(3)若,,试确定所有,使数列中存在某个连续项的和是数列中的一项,请证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com