精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .
(1)当 时,求 的单调区间;
(2)设 是曲线 图象上的两个相异的点,若直线 的斜率 恒成立,求实数 的取值范围;
(3)设函数 有两个极值点 ,且 ,若 恒成立,求实数 的取值范围.

【答案】
(1)解:

的单调增区间为 ;单调减区间为 .


(2)解: ,所以

上单调递增,

,对 恒成立,

,对 恒成立,

,当 时取等号,

,故 .


(3)解: ,因为函数 有两个极值点 ,所以 是方程 的两个根,即,所以是 方程 的两个根,

所以有

,则 ,设

上单减,∴

.


【解析】(1)根据题意求出导函数,利用导函数的正负来判断f ( x ) 的单调性。(2)根据题意可知构造函数并确定函数的单调性,分离参数即可求出a的取值范围。(3)由已知利用韦达定理整理f(x1)f(x1)的代数式,整体代换令 x 12= x构造函数 g ( x )=,对其求导利用导函数的正负确定原函数的单调性,即可求出最值进而可求出m的取值范围。
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)当a=2时,求不等式f(x)>3的解集
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)当a=2时,求不等式f(x)>3的解集
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:

连锁店

A

B

C

售价x(元)

80

86

82

88

84

90

销量y(件)

88

78

85

75

82

66


(1)分别以三家连锁店的平均售价与平均销量为散点,求出售价与销量的回归直线方程
(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)
附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从 种服装、 种家电、 种日用品中,选出 种商品进行促销活动.
(1)试求选出 种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高 元,规定购买该商品的顾客有 次抽奖的机会: 若中一次奖,则获得数额为 元的奖金;若中两次奖,则获得数额为 元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是 ,请问: 商场将奖金数额 最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设M=( ﹣1)( ﹣1)( ﹣1)满足a+b+c=1(其中a>0,b>0,c>0),则M的取值范围是(
A.[0,
B.[ ,1)
C.[1,8)
D.[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线 的极坐标方程分别为 .
(1)求曲线 的公共点的个数;
(2)过极点作动直线与曲线 相交于点Q,在OQ上取一点P,使 ,求点P的轨迹,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1? =z2?
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)设函数 ,求 的最大值;
(2)试判断方程 内存在根的个数,并说明理由.

查看答案和解析>>

同步练习册答案