精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,
3
2
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为
12
2
7
,求以F2为圆心且与直线l相切的圆的方程.
分析:(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,
3
2
)到两焦点的距离求得a,进而根据b=
a2-c2
求得b,得到椭圆的方程.
(Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A(x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程.
解答:解:(Ⅰ)设椭圆的方程为
x2
a2
+
y2
b2
=1,(a>b>0)
,由题意可得:
椭圆C两焦点坐标分别为F1(-1,0),F2(1,0).
2a=
(1+1)2+(
3
2
)
2
+
(1-1)2+(
3
2
)
2
=
5
2
+
3
2
=4

∴a=2,又c=1,b2=4-1=3,
故椭圆的方程为
x2
4
+
y2
3
=1

(Ⅱ)当直线l⊥x轴,计算得到:
A(-1,-
3
2
),B(-1,
3
2
)
S△AF2B=
1
2
•|AB|•|F1F2|=
1
2
×3×2=3
,不符合题意.
当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),
y=k(x+1)
x2
4
+
y2
3
=1
,消去y得(3+4k2)x2+8k2x+4k2-12=0
显然△>0成立,设A(x1,y1),B(x2,y2),
x1+x2=-
8k2
3+4k2
x1x2=
4k2-12
3+4k2

|AB|=
1+k2
(x1+x2)2-4x1x2
=
1+k2
64k4
(3+4k2)2
-
4(4k2-12)
3+4k2

|AB|=
1+k2
12
k2+1
3+4k2
=
12(k2+1)
3+4k2

又圆F2的半径r=
|k×1-0+k|
1+k2
=
2|k|
1+k2

所以S△AF2B=
1
2
|AB|r=
1
2
×
12(k2+1)
3+4k2
2|k|
1+k2
=
12|k|
1+k2
3+4k2
=
12
2
7

化简,得17k4+k2-18=0,
即(k2-1)(17k2+18)=0,解得k=±1
所以,r=
2|k|
1+k2
=
2

故圆F2的方程为:(x-1)2+y2=2.
点评:本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:山东省济宁市2012届高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

点,左焦

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

同步练习册答案