精英家教网 > 高中数学 > 题目详情
如图,过抛物线的焦点F的直线依次交抛物线及其准线于点A、B、C,若|BC |=2|BF|,且|AF|=3,则抛物线的方程是     

试题分析:分别过A,B两点作AD,BG垂直于准线,∴│AD│=│AF│=3,│BG│=│BF│=
设OF与准线的交点为E,∵ΔCBG∽ΔCAD ,∴
=2×3=6,∴│FC│=6-3=3
又∵ΔCBG∽ΔCFE
,∴│EF│==,∴p=
∴抛物线方程为
点评:中档题,本题充分利用数形结合思想,应用抛物线的定义,确定得到p=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆有相同的焦点,点分别是椭圆的右、右顶点,若椭圆经过点
(1)求椭圆的方程;
(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;
(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P是曲线C:上的动点,点P到点(0,1)的距离和它到
焦点F的距离之和的最小值为
(1)求曲线C的方程
(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,
过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C
相切?若存在,求出k的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在抛物线上,横坐标为的点到焦点的距离为,则的值为(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程mx2-my2=n中,若mn<0,则方程的曲线是(    )
A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线
C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为,一个焦点和抛物线的焦点重合,过直线上一点引椭圆的两条切线,切点分别是.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点处的椭圆的切线方程是. 求证:直线恒过定点;并出求定点的坐标.
(Ⅲ)是否存在实数,使得恒成立?(点为直线恒过的定点)若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(1)求椭圆方程;
(2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆O,直线l与椭圆C相交于PQ两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于AB两点,且,求直线l的方程;
(Ⅱ)如图,若重心恰好在圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线恰有三个点到直线距离为,则     .

查看答案和解析>>

同步练习册答案