【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )
【答案】(1);(2);(3)可靠的,理由见解析.
【解析】试题分析:(1)求出抽到相邻两组数据的事件概率,利用对立事件的概率计算抽到不相邻两组数据的概率值;(2)由表中数据,利用公式计算回归直线方程的系数,写出回归直线方程,利用方程计算并判断所得的线性回归方程是否可靠.
试题解析:(1)设抽到不相邻两组数据为事件,因为从第5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况有4种,所以
故选取的2组数据恰好是不相邻的2天数据的概率是,
(2)由数据,求得
,由公式得,
,
所以关于的线性回归方程这
(3)当时,
同样地,当时,
所以,该研究所得到的线性回归方程是可靠
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线l与椭圆交于M,N两点,求△OMN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对任意x∈(0,+∞),恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格在.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)根据已知条件完成如图列联表,并据此资料判断你是否有的把握认为“围棋迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附:,其中.
0.05 | 0.010 | |
3.74 | 6.63 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为D,若函数满足条件:存在,使在上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左焦点为,其左、右顶点为、,椭圆与轴正半轴的交点为,的外接圆的圆心在直线上.
(I)求椭圆的方程;
(II)已知直线:,是椭圆上的动点,,垂足为,是否存在点,使得为等腰三角形?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:
优秀 | 非优秀 | 总计 | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.
附:=
0.500 | 0.400 | 0.100 | 0.010 | 0.001 | |
0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)为定义在R上的奇函数.如图是函数图象的一部分,当0≤x≤2时,是线段OA;当x>2时,图象是顶点为P(3,4)的抛物线的一部分.
(1)在图中的直角坐标系中画出函数f(x)的图象;
(2)求函数f(x)在[2,+∞)上的解析式;
(3)写出函数f(x)的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com