精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若b= ,c=1,求△ABC的面积.

【答案】
(1)解:在△ABC中,∵C=π﹣(A+B),cosC+(cosA﹣ sinA)cosB=0,

∴﹣cos(A+B)+cosAcosB﹣ sinAcosB=0

即sinAsinB﹣ sinAcosB=0

∵sinA≠0,∴sinB﹣ cosB=0,即tanB=

∵0<B<π,∴


(2)解:由余弦定理得,b2=a2+c2﹣2accosB,

把b= ,c=1代入得,3=a2+1﹣a,

即a2﹣a﹣2=0,解得a=2


【解析】(1)利用诱导公式、两角和的余弦公式、商的关系化简已知的式子,根据内角的范围和特殊角的三角函数值求出B的值;(2)由条件和余弦定理列出方程求出a的值,由三角形的面积公式求出△ABC的面积.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(1﹣a)x+(1﹣a).a∈R.
(1)当a=4时,解不等式f(x)≥7;
(2)若对P任意的x∈(﹣1,+∞),函数f(x)的图象恒在x轴上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a10=30,a20=50.
(1)求通项公式;
(2)若Sn=242,求项数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的结果是(

A.16
B.17
C.14
D.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆N经过点A(3,1),B(﹣1,3),且它的圆心在直线3x﹣y﹣2=0上.
(Ⅰ)求圆N的方程;
(Ⅱ)求圆N关于直线x﹣y+3=0对称的圆的方程.
(Ⅲ)若点D为圆N上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于(  )

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2 , a∈R,
(1)求函数f(x)的单调区间;
(2)若x≥1时,f(x)≤0恒成立,求实数a的取值范围;
(3)设a>0,若A(x1 , y1),B(x2 , y2)为曲线y=f(x)上的两个不同点,满足0<x1<x2 , 且x3
(x1 , x2),使得曲线y=f(x)在x=x3处的切线与直线AB平行,求证:x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y﹣1=0对称,圆心在第二象限,半径为
(1)求圆C的方程;
(2)已知不过原点的直线l与圆C相切,且与x轴、y轴上的截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017黑龙江大庆实验中学仿真模拟如图,在四棱锥P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.

(Ⅰ)证明:CQ∥平面PAB;

(Ⅱ)求直线PD与平面AQC所成角的正弦值.

查看答案和解析>>

同步练习册答案