精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的偶函数,且在区间(-∞,0)上是增函数,若f(-2a2-a-1)<f(-3a2+2a-1),那么实数a的取值范围是(  )
A、(-1,0)B、(-∞,0)∪(3,+∞)C、(3,+∞)D、(0,3)
分析:利用函数的单调性,将函数值的大小关系转化为自变量的关系得出关于a的不等式是解决本题的关键,还要注意整体自变量的取值是否属于该定义区间.
解答:解:由于-2a2-a-1=-2((a+
1
4
2+
7
16
)<0,-3a2+2a-1=-3((a-
1
3
2+
2
9
)<0,
故-2a2-a-1,-3a2+2a-1均在区间(-∞,0)上,
因此f(-2a2-a-1)<f(-3a2+2a-1)?-2a2-a-1<-3a2+2a-1,
解得a∈(0,3).
故选D.
点评:本题考查抽象函数问题的解决方法,考查利用函数的单调性进行函数值与自变量大小关系的转化问题,考查解不等式求字母取值范围的思想和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案