分析 (1)根据向量的数量积公式,倍角公式,辅助角公式,化简函数的解析式,结合f(x)图象的一条对称轴为x=$\frac{5π}{8}$,求出ω=1,代入可得f($\frac{3}{4}$π)的值;
(2)若f($\frac{a}{2}-\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{3}}{3}$,且$α,β∈(-\frac{π}{2},\frac{π}{2})$,可得α,β的余弦值,代入差角的余弦公式,可得答案.
解答 解:(1)∵向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow{b}$=(2sin(ωx+$\frac{π}{4}$),-1)=($\sqrt{2}$(sinωx+cosωx),-1)
∴函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=2cosωx(sinωx+cosωx)-1=2sinωxcosωx+2cos2ωx-1=sin2ωx+cos2ωx=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),
∵f(x)图象的一条对称轴为x=$\frac{5π}{8}$.
∴2ω×$\frac{5π}{8}$+$\frac{π}{4}$=$\frac{π}{2}$+kπ,(k∈Z).
又由$\frac{1}{4}$≤ω≤$\frac{3}{2}$,
∴ω=1,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴f($\frac{3}{4}$π)=$\sqrt{2}$sin(2×$\frac{3}{4}$π+$\frac{π}{4}$)=-$\sqrt{2}$cos$\frac{π}{4}$=-1,
(2)∵f($\frac{a}{2}-\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{3}}{3}$,
∴sinα=$\frac{1}{3}$,sinβ=$\frac{2}{3}$,
∵$α,β∈(-\frac{π}{2},\frac{π}{2})$,
∴cosα=$\frac{2\sqrt{2}}{3}$,cosβ=$\frac{\sqrt{5}}{3}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{2\sqrt{10}+2}{9}$.
点评 本题考查的知识点是三角函数中的恒等变换应用,正弦函数的图象和性质,数量积公式,倍角公式,辅助角公式,两角差的余弦公式,难度中档.
科目:高中数学 来源: 题型:选择题
A. | 若m,n平行于同一平面,则m与n平行 | |
B. | 若α,β垂直于同一平面,则α与β平行 | |
C. | 若m,n是异面直线,过空间中任意一点一定存在平面与m,n都平行 | |
D. | 若m,n不平行,则m与n一定不可能垂直于同一平面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 2 | C. | 3 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{\frac{6}{5}}$ | B. | $\frac{6}{5}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com