精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求的值域;

(2)若不等式上恒成立,求实数的取值范围;

(3)当 )时,函数 的值域为,求实数的取值范围.

【答案】(1) ;(2) ;(3) .

【解析】试题分析:(1)先确定函数单调性(利用定义判断并证明),再根据单调性确定函数最值,得值域(2)化简不等式为,再根据不等式恒成立转化为函数最值问题,根据函数最值得实数的取值范围;(3)是单调增函数,所以,即方程有两个不等的正根,根据实根分布可得实数满足条件,解得的取值范围.

试题解析:(1)由于

所以在区间上为单调增函数,

的值域为

(2)∵

∴不等式上恒成立,即为上恒成立

小于等于上的最小值

上是单调增函数∴

(3)∵.

时, ,不合题意

②当时, 上是单调增函数,

∴方程有两个不等的正根,

,即

综上知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;

②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;

③线性回归方程必经过点

④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )

A. 0

B. 1

C. 2

D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,其中为自然对数的底数.

1)求实数的值;

2)若存在,使得不等式成立,求实数的取值范围;

3)若函数上不存在最值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙Cx2y22x4y10.

(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.

(2)从圆外一点P(x0y0)向圆引切线PMM为切点,O为原点,若|PM||PO|,求使|PM|最小的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

2为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:f(x)=2/(x-m)在区间(1,+∞)上是减函数;;命题q:2x-1+2m>0对任意x∈R恒成立.若(p)∧q为真,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.

(1)求f(x)的解析式;

(2)k为何值时,方程f(x)-k=0只有1个根

(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数,).(Ⅰ)求函数的单调区间;(Ⅱ)当时,是否存在实数,使得当时,不等式恒成立?如果存在,求的取值范围;如果不存在,请说明理由(其中是自然对数的底数,).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列函数的单调区间.

(1)y=|x+1|; (2)y=-x2+ax;

(3)y=|2x-1|; (4)y=-.

查看答案和解析>>

同步练习册答案