精英家教网 > 高中数学 > 题目详情

【题目】若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上,不等式f(x)>6x+m恒成立,求实数m的取值范围.

【答案】
(1)解:由f(0)=3得,c=3.∴f(x)=ax2+bx+3.

又f(x+1)﹣f(x)=4x+1,∴a(x+1)2+b(x+1)+3﹣(ax2+bx+3)=4x+1,

即2ax+a+b=4x+1,

,∴ .∴f(x)=2x2﹣x+3


(2)解:f(x)>6x+m等价于2x2﹣x+3>6x+m,即2x2﹣7x+3>m在[﹣1,1]上恒成立,

令g(x)=2x2﹣7x+3,则g(x)min=g(1)=﹣2,∴m<﹣2


【解析】(1)利用f(0)=3求出c,利用f(x+1)﹣f(x)=4x+1求出a,b,即可求f(x)的解析式;(2)在区间[﹣1,1]上,不等式f(x)>6x+m恒成立,转化为二次函数的闭区间上的最值,求解实数m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a>0, 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在R上的增函数,下列函数中
①y=[f(x)]2是增函数;
②y= 是减函数;
③y=﹣f(x)是减函数;
④y=|f(x)|是增函数;
其中正确的结论是(
A.③
B.②③
C.②④
D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={y|y=log2x,x≥4},B={y|y=( x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(1)求红队至少两名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)﹣ x.
(1)试判断函数f(x)的奇偶性并证明;
(2)设g(x)=log4(a2x a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期“共享单车”在全国多个城市持续升温,某移动互联网机构通过对使用者的调查得出,现在市场上常见的八个品牌的“共享单车”的满意度指数如茎叶图所示:

(Ⅰ)求出这组数据的平均数和中位数;

(Ⅱ)某用户从满意度指数超过80的品牌中随机选择两个品牌使用,求所选两个品牌的满意度指数均超过85的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 的圆心为原点 ,且与直线 相切。
(1)求圆 的方程;
(2)过点 (8,6)引圆O的两条切线 ,切点为 ,求直线 的方程.

查看答案和解析>>

同步练习册答案