精英家教网 > 高中数学 > 题目详情

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

【答案】3
【解析】解:如图所示,建立直角坐标系.A(1,0).
的夹角为α,且tanα=7.
∴cosα= ,sinα=
∴C
cos(α+45°)= (cosα﹣sinα)=
sin(α+45°)= (sinα+cosα)=
∴B
=m +n (m,n∈R),
=m﹣ n, =0+ n,
解得n= ,m=
则m+n=3.
故答案为:3.

如图所示,建立直角坐标系.A(1,0).由 的夹角为α,且tanα=7.可得cosα= ,sinα= .C .可得cos(α+45°)= .sin(α+45°)= .B .利用 =m +n (m,n∈R),即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数a、b满足:a>0,b>0.
(1)若x∈R,求证:|x+a|+|x﹣b|≥2
(2)若a+b=1,求证: + + ≥12.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆 ,点.

(1)求经过点且与圆相切的直线的方程;

(2)过点的直线与圆相交于两点,为线段的中点,求线段长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 ,则λ+μ的最大值为( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈[-]

(1)求函数y=cosx的值域;

(2)求函数y=-3sin2x-4cosx+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是

1)求n的值;

2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b

为事件A,求事件A的概率;

在区间内任取2个实数,求事件恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是

查看答案和解析>>

同步练习册答案