精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点EF,且EF=.则下列结论中正确的个数为

①AC⊥BE

②EF∥平面ABCD

三棱锥A﹣BEF的体积为定值;

的面积与的面积相等,

A.4B.3C.2D.1

【答案】B

【解析】

试题AC⊥BE,由题意及图形知,AC⊥DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;由图形可以看出,B到线段EF的距离与AEF的距离不相等,故△AEF的面积与△BEF的面积相等不正确

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一副直角三角板(如图1)拼接,将折起,得到三棱锥(如图2).

(1)若分别为的中点,求证: 平面

(2)若平面平面,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学小组从医院和气象局获得20181月至6月份每月20的昼夜温差,()和患感冒人数(/人)的数据,画出如图的折线图.

1)建立关于的回归方程(精确到0.01),预测20191月至6月份昼夜温差为时患感冒的人数(精确到整数);

2)求的相关系数,并说明的相关性的强弱(若,则认为具有较强的相关性),

参考数据:

相关系数:,回归直线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.若函数在区间上有两个零点,则的取值范围是________.若其在区间上至少有一个零点,则的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.20197月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭201916月的人均月纯收入,作出散点图如下:

根据相关性分析,发现其家庭人均月纯收入与时间代码之间具有较强的线性相关关系(记20191月、2月……分别为,…,依此类推),由此估计该家庭2020年能实现小康生活.20201月突如其来的新冠肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月的人均月纯收入均只有201912月的预估值的.

1)求该家庭20203月份的人均月纯收人;

2)如果以该家庭3月份人均月纯收入为基数,以后每月的增长率为,为使该家庭2020年能实现小康生活,至少应为多少?(结果保留两位小数)

参考数据:.

参考公式:线性回归方程中,

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术·均输》中有如下问题:今有五人分十钱,令上二人所得与下三人等,问各得几何.其意思为已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?是古代的一种重量单位).这个问题中,甲所得为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求处的切线与两坐标轴围成的三角形的面积;

2)若上的最大值为,求的值.

查看答案和解析>>

同步练习册答案