精英家教网 > 高中数学 > 题目详情

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。

(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。

(Ⅰ)详见解析;(Ⅱ)平面AA1B与平面A1BC的夹角的余弦值

解析试题分析:(Ⅰ)求证:AC1⊥平面A1BC,只需证垂直平面内两条线即可,由于平面平面,可得,由题意可得,四边形是菱形,由菱形对角线性质可知,,从而可得平面,也可利用向量法,即如图以轴建立空间直角坐标系,由 ,即可得平面;(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值,可用传统方法,找二面角的平面角,设,作,连接,则为二面角的平面角,从而求得两平面夹角的余弦值为,还可以利用向量来求,即找出两个平面的法向量,利用法向量的夹角平面AA1B与平面A1BC的夹角的余弦值.
试题解析:解法一:
(Ⅰ)由于平面平面,所以,所以。(2分)
是菱形,因此,所以平面。(4分)
(Ⅱ)设,作,连接
由(1)知平面,即平面,所以
,因此
所以为二面角的平面角,(8分)
中,,故直角边
又因为中斜边 因此中斜边
所以,所以所求两平面夹角的余弦值为。(12分)
解法二:
如图,取的中点,则

因为,所以,又平面,(2分)
轴建立空间直角坐标系,则
(Ⅰ)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱与底面垂直,,, M、N分别是的中点,点P在线段上,且,

(1)证明:无论取何值,总有.
(2)当时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,

(Ⅰ)求证:
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面平面,.设分别为中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面;
(Ⅲ)试问在线段上是否存在点,使得过三点 ,,的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。

(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个斜三棱柱,已知、平面平面,又分别是的中点.

(1)求证:∥平面; (2)求二面角的大小.

查看答案和解析>>

同步练习册答案