精英家教网 > 高中数学 > 题目详情

PA,PB,PC是从点P引出的三条射线,每两条的夹角均为60°,则直线PC与平面PAB所成角的余弦值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:过PC上一点D作PO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角,说明点O在∠APB的平分线上,通过直角三角形PED、DOP,求出直线PC与平面PAB所成角的余弦值.
解答:解:过PC上一点D作PO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
设PE=1,∵∠OPE=30°∴OP==
在直角△PED中,∠DPE=60°,PE=1,则PD=2.
在直角△DOP中,OP=,PD=2.则cos∠DPO==
即直线PC与平面PAB所成角的余弦值是
故选C.
点评:本题是中档题,考查直线与平面所成角正弦值的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,熟练掌握基本定理、基本方法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

PA,PB,PC是从点P引出的三条射线,每两条的夹角均为60°,则直线PC与平面PAB所成角的余弦值为(  )
A、
1
2
B、
6
3
C、
3
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,那么直线PC与平面PAB所成角的余弦值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,则直线PC与平面PAB所成角的余弦值是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

PAPBPC是从P引出的三条射线,每两条的夹角都是,则直线PC与平面PAB所成角的余弦值为(  )

A.                     B.                  C.                  D.

查看答案和解析>>

科目:高中数学 来源:新课标高三数学空间向量及其运算、角的概念及其求法和空间距离专项训练(河北) 题型:填空题

PA,PB,PC是从P点引出的三条射线,他们之间每两条的夹角都是60°,则直线PC与平面PAB所成的角的余弦值为_______________

 

查看答案和解析>>

同步练习册答案