【题目】已知抛物线.
(1)点是该抛物线上任一点,求证:过点的抛物线的切线方程为;
(2)过点作该抛物线的两条切线,切点分别为,,设的面积为,求的最小值.
科目:高中数学 来源: 题型:
【题目】某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了名职工进行测试,得到频数分布表如下:
日组装个数 | ||||||
人数 | 6 | 12 | 34 | 30 | 10 | 8 |
(1)现从参与测试的日组装个数少于的职工中任意选取人,求至少有人日组装个数少于的概率;
(2)由频数分布表可以认为,此次测试得到的日组装个数服从正态分布,近似为这人得分的平均值(同一组数据用该组区间的中点值作为代表).
(
(ii)为鼓励职工提高技能,企业决定对日组装个数超过的职工日工资增加元,若在组装车间所有职工中任意选取人,求这三人增加的日工资总额的期望.
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,是以PF为底边的等腰三角形,PA平行于x轴,点,且点P在直线上运动.记点A的轨迹为C.
(1)求C的方程.
(2)直线AF与C的另一个交点为B,等腰底边的中线与直线的交点为Q,试问的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有6本不同的书,在下列不同的条件下,各有多少种不同的分法?
(1)分给甲乙丙三人,其中一个人1本,一个人2本,一个人3本;
(2)分成三组,一组4本,另外两组各1本;
(3)甲得1本,乙得1本,丙得4本.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国式过马路”的大意是凑够一撮人即可走,跟红绿灯无关.部分法律专家的观点为“交通规则的制定目的就在于服务城市管理,方便行人,而‘中国式过马路’是对我国法治化进程的严重阻碍,反应了国人规则意识的淡薄.”某新闻媒体对此观点进行了网上调查,所有参与调查的人中,持“支持”“中立”和“不支持”态度的人数如表所示:
支持 | 中立 | 不支持 | |
20岁以下 | 700 | 450 | 200 |
20岁及以上 | 200 | 150 | 300 |
在所有参与调查的人中,用分层随机抽样的方法抽取人,则持“支持”态度的人中20岁及以上的有_________人
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com