【题目】已知等差数列满足,
(I)求数列的通项公式;
(II)求数列的前n项和.
【答案】(1)(2)
【解析】试题分析:(1)设等差数列 的公差为 ,首项为, 由 可列关于、的方程,解得、的值即可得结果;(2) ,利用“错位相减法”与等比数列的前 项和公式即可得结果.
试题解析:(I)设等差数列的公差为d,由已知条件可得
解得故数列的通项公式为
(II)设数列,即,
所以,当时,
所以综上,数列
【易错点晴】本题主要考等差数列的通项公式、等比数列的求和公式及“错位相减法”求数列的和,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线与圆: 交于两点.
(1)若,求直线的方程;
(2)轴上是否存在定点,使得当变动时,总有直线的斜率之和为0?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的对称轴为,.
(1)求函数的最小值及取得最小值时的值;
(2)试确定的取值范围,使至少有一个实根;
(3)若,存在实数,对任意,使恒成立,求实数的取
值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C的顶点在x轴上,两顶点间的距离是8,离心率
(1)求双曲线C的标准方程;
(2)过点P(3,0)且斜率为k的直线与双曲线C有且仅有一个公共点,求k的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:的左、右焦点,P为椭圆C上任意一点,且最小值为0.
⑴求椭圆C的方程;
⑵若动直线l1,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出B坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com