精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.

【答案】
(1)解:∵|x+5﹣a|≤2,∴a﹣7≤x≤a﹣3,

∵f(x)﹣|x﹣a|≤2的解集为:[﹣5,﹣1],

,∴a=2


(2)解:∵f(x)=|x﹣a|+|x+5﹣a|≥5,

x0∈R,使得f(x0)<4m+m2成立,

∴4m+m2>f(x)min,即4m+m2>5,解得:m<﹣5,或m>1,

∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞)


【解析】(1))问题转化为|x+5﹣a|≤2,求出x的范围,得到关于a的不等式组,解出即可;(2)问题转化为4m+m2>f(x)min , 即4m+m2>5,解出即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点在线段上运动,则下列判断中不正确的是 ( )

A. 所成角的范围是

B.

C.

D. 三棱锥的体积不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轴上动点引抛物线的两条切线 为切点,设切线的斜率分别为.

求证

求证:直线恒过顶点,并求出此定点坐标;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为

)当时,求直线被圆截得的弦长

)当直线被圆截得的弦长最短时,求直线的方程

)在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设表示学生注意力指标.

该小组发现随时间(分钟)的变化规律(越大,表明学生的注意力越集中)如下:).

若上课后第分钟时的注意力指标为,回答下列问题:

)求的值.

)上课后第分钟和下课前分钟比较,哪个时间注意力更集中?并请说明理由.

)在一节课中,学生的注意力指标至少达到的时间能保持多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1的方程为3x+4y﹣12=0.

(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;

(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右准线的方程为焦距为.

1求椭圆的方程;

2过定点作直线与椭圆交于点(异于椭圆的左、右顶点)两点,设直线与直线相交于点.

,试求点的坐标;

求证:点始终在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的图象关于直线对称,它的最小正周期为π,则(   )

A. f(x)的图象过点(0,) B. f(x)上是减函数

C. f(x)的一个对称中心是 D. f(x)的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,动点满足成等差数列。

(1)求点的轨迹方程;

(2)对于轴上的点,若满足,则称点为点对应的“比例点”,问:对任意一个确定的点,它总能对应几个“比例点”?

查看答案和解析>>

同步练习册答案