精英家教网 > 高中数学 > 题目详情

如图,直四棱柱ABCD-A1B1C1D1的底面是

梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点。点P到直线

AD1的距离为

⑴求证:AC∥平面BPQ

⑵求二面角B-PQ-D的大小

(Ⅰ)证明见解析(Ⅱ)arctan


解析:

⑴连接CD1 ∵P、Q分别是CC1、C1D1的        

中点。∴CD1∥PQ  故CD1∥平面BPQ

又D1Q=AB=1,D1Q∥AB,

得平行四边形ABQD1,故AD1∥平面BPQ

  ∴平面ACD1∥平面BPQ

  ∴AC∥平面BPQ         (4分)

⑵设DD1中点为E,连EF,则PE∥CD

∵CD⊥AD,CD⊥DD1   ∴CD⊥平面ADD1

∴PE⊥平面ADD1

过E作EF⊥AD1于F,连PF。则PF⊥AD1,PF为点P到直线AD1的距离

PF=,PE=2  ∴EF=  又D1E=,D1D=1,∴AD=1    

取CD中点G,连BG,由AB∥DG,AB=DG得GB∥AD。∵AD⊥DC,AD⊥DD1∴AD⊥平面DCC1D1,则BG⊥平面DCC1D1

    过G作GH⊥PQ于H,连BH,则BH⊥PQ,故∠BHG是二面角B-PQ-D的平面角。                                                    

    由△GHQ∽△QC1P得GH=,又BG=1,得tan∠BHG=

∴二面角B-PQ-D大小为arctan

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图:直三棱柱ABC-A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B-APQC的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AB⊥BC,D为AC的中点,AA1=AB=2.
(1)求证:AB1∥平面BC1D;
(2)若四棱锥B-DAA1C1的体积为2,求二面角C-BC1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠ABC=45°,其侧面展开图是边长为8的正方形.E、F分别是侧棱AA1、CC1上的动点,AE+CF=8.
(1)证明:BD⊥EF;
(2)当CF=
14
CC1时,求面BEF与底面ABCD所成二面角的正弦值;
(3)多面体AE-BCFB1的体积V是否为常数?若是,求这个常数,若不是,求V的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且∠ABC=60°,E为棱CD的中点.
(Ⅰ)求证:A1C∥平面AED1
(Ⅱ)求证:平面AED1⊥平面CDD1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点E是棱C1C上一点.
(1)求证:无论E在任何位置,都有A1E⊥BD
(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
(3)试确定点E的位置,使得四面体A1-BDE体积最大.并求出体积的最大值.

查看答案和解析>>

同步练习册答案