精英家教网 > 高中数学 > 题目详情
13.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层按公比为2的等比数列递增).根据此诗,可以得出塔的顶层和底层共有195盏灯.

分析 由题意可知灯的盏灯的数量从塔的顶层到底层构成等比数列,且公比为2,然后由等比数列的前7项和等于381列式计算即可.

解答 解:由题意可知灯的盏灯的数量从塔的顶层到底层构成等比数列,且公比为2,
设塔的顶层灯的盏灯为x,则x+2x+4x+8x+16x+32x+64x=381,解得x=3,
可以得出塔的顶层和底层共有x+64x=195盏灯.
故答案为:195.

点评 本题考查了简单的演绎推理,考查了等比数列的前n项和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{1}{{\sqrt{2-x}}}+ln(x+1)$的定义域为(  )
A.(-1,2]B.(-1,2)C.(2,+∞)D.(-1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.牛大叔常说“价贵货不假”,他这句话的意思是:“不贵”是“假货”的(  )
A.充分条件B.必要条件
C.充分必要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)试用比较法证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)
(2)已知x2+y2=2,且|x|≠|y|,求$\frac{1}{{9{x^2}}}+\frac{9}{y^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题P:“如果a+b>0,那么a>0且b>0.”写出命题P的否命题:“如果a+b≤0,那么a≤0或b≤0.”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且S10=$\int_0^1{(\sqrt{1-{x^2}}}+2x-\frac{π}{4})dx$,则a5+a6=(  )
A.$\frac{12}{5}$B.12C.6D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在三棱柱BCD-B1C1D1中,E、F分别是B1C1和C1D1的中点.求证:四边形EFDB是梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=eax+λlnx,其中a<0,e是自然对数的底数
(Ⅰ)若f(x)是(0,+∞)上的单调函数,求λ的取值范围;
(Ⅱ)若0<λ<$\frac{1}{e}$,证明:函数f(x)有两个极值点.

查看答案和解析>>

同步练习册答案