精英家教网 > 高中数学 > 题目详情
9.证明:$\frac{2a}{1+{a}^{2}}$≤1.

分析 利用分析法计算即得结论.

解答 证明:∵1+a2≥1>0,
∴要证原式成立,只需证2a≤1+a2
即证1+a2-2a≥0,
而这显然成立,
故原不等式成立.

点评 本题考查不等式的证明,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若1gx-1gy=m,则1g($\frac{x}{4}$)3-lg${(\frac{y}{4})}^{3}$=3m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=1+sinx,(x∈[-π,π])的图象与直线y=$\frac{3}{2}$的交点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上的偶函数,且周期为3,若f(2)=0,则方程f(x)=0在区间(0,6)内根的个数最少为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知cos(x-$\frac{π}{6}$)=m,则cosx+cos(x-$\frac{π}{3}$)=$\sqrt{3}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{-x,x∈[-1,0)}\\{\frac{1}{f(x-1)}-1,x∈[0,1)}\end{array}\right.$,若方程f(x)-kx-3k=0有两个实数根,则k的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别      
是否需要志愿者
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列定积分
(1)${∫}_{1}^{2}$(x-x2+$\frac{1}{x}$)dx
(2)${∫}_{-π}^{0}$(cosx+ex)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=∠AOI=60°,P为各菱形边上的动点,设$\overrightarrow{OP}$=x$\overrightarrow{OD}$+y$\overrightarrow{OH}$,则x+y的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案