精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)当sinθ=-$\frac{1}{2}$时,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,且θ∈[0,2π),求θ的取值范围.

分析 (1)求出f(x)的解析式,根据二次函数的性质求出函数的最大值和最小值即可;
(2)求出函数的对称轴,根据函数f(x)的单调性,得到-sinθ≤-$\frac{1}{2}$或-sinθ≥$\frac{\sqrt{3}}{2}$,从而求出θ的范围即可.

解答 解:(1)当sinθ=-$\frac{1}{2}$时,f(x)=${(x-\frac{1}{2})}^{2}$-$\frac{5}{4}$,
由x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$],当x=$\frac{1}{2}$时,f(x)有最小值为-$\frac{5}{4}$,
当x=-$\frac{1}{2}$时,函数f(x)有最大值-$\frac{1}{4}$;
(2)由已知f(x)=x2+2sinθ•x-1的图象的对称轴为x=-sinθ,
要使f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,
则-sinθ≤-$\frac{1}{2}$或-sinθ≥$\frac{\sqrt{3}}{2}$,
即sinθ≥$\frac{1}{2}$或sinθ≤-$\frac{\sqrt{3}}{2}$,又θ∈[0,2π),
所以θ的取值范围是:[$\frac{π}{6}$,$\frac{5π}{6}$]∪[$\frac{4π}{3}$,$\frac{5π}{3}$].

点评 本题考查了函数的单调性、最值问题,考查二次函数的性质以及三角函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.判断下列角与象限,不正确的是(  )
A.135°  第二象限B.361°   第一象限C.900°  第二象限D.-421°  第三象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2x,若从区间[-2,2]上任取一个实数x,则使不等式f(x)>2成立的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f (x)及其导数f′(x),若存在x0,使得f (x0)=f′(x0),则称x0是f (x)的一个“巧值点”,下列函数中,存在“巧值点”的是①②③⑤.(填上所有正确的序号)
①f (x)=x2
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知角α的终边上一点P的坐标为$(-\sqrt{3},2)$,求sinα,cosα和tanα.
(2)在[0°,720°]中与-21°16′终边相同的角有哪些?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i是虚数单位,${i^7}-\frac{2}{i}$=(  )
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,则$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1009-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.0C.2D.π

查看答案和解析>>

同步练习册答案