精英家教网 > 高中数学 > 题目详情

【题目】2017 年省内某事业单位面向社会公开招骋工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于分的才有资格参加面试, 分以下(不含分)则被淘汰,现有名竞骋者参加笔试,参加笔试的成绩按区间分段,其频率分布直方图如图所示(频率分布直方图有污损),但是知道参加面试的人数为,且笔试成绩在的人数为.

(1)根据频率分布直方图,估算竞骋者参加笔试的平均成绩;

(2)若在面试过程中每人最多有次选题答题的机会,累计答对题或答错题, 答对题者方可参加复赛,已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响,若他连续三次答题中答对一次的概率为,求面试者甲答题个数的分布列及数学期望.

【答案】(1)78.48;(2)见解析.

【解析】试题分析:(1)利用频率分布直方图中小长方体面积表示对应频率的含义,每个小矩形的均值乘以频率求和即可;

2设面试者甲每道题答对的概率为,则,面试者甲答题个数的可能取值为,依次求概率即可.

试题解析:

(1)设竞聘者成绩在区间的人数分别为,则,解得.,解得.,

解得,竞聘者参加笔试的平均成绩为

.

(2)设面试者甲每道题答对的概率为,则,面试者甲答题个数的可能取值为,则

. 的分布列如下表:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列{an}的前n项和Sn满足Sn=2an+n.

(Ⅰ)求证:数列{an﹣1}是等比数列;

(Ⅱ)记bn= ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从正方体ABCD﹣A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
1)矩形的4个顶点;
2)每个面都是等边三角形的四面体的4个顶点;
3)每个面都是直角三角形的四面体的4个顶点;
4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确结论的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的中心在原点,长轴左、右端点轴上,椭圆的短轴为,且的离心率都为,直线, 交于两点,与交于两点,这四点纵坐标从大到小依次为.

(1)设,求的比值;

(2)若存在直线,使得,求两椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(3,5),B(-1,3),C(-3,1)为△ABC的三个顶点,OMN分别为边ABBCCA的中点,求△OMN的外接圆的方程,并求这个圆的圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,其中.

1)若数列是等比数列,求实数的值;

2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令),在(1)的条件下,求数列的“积异号数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于直线对称.

(1)不等式对任意恒成立,求实数的最大值;

(2)设内的实根为 ,若在区间上存在,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在D上的函数,若存在区间[m,n]D及正实数k,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①f(x)=3﹣ 不可能是k型函数;
②若函数f(x)= (a≠0)是1型函数,则n﹣m的最大值为
③若函数f(x)=﹣ x2+x是3型函数,则m=﹣4,n=0.
其中正确说法个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案