精英家教网 > 高中数学 > 题目详情
已知圆O:(x+
3
)2+y2=16,点A(
3
,0)
,Q是圆上一动点,AQ的垂直平分线交OQ于点M,设点M的轨迹为E.
(I)求轨迹E的方程;
(Ⅱ)过点P(1,0)的直线l交轨迹E于两个不同的点A、B,△AOB(O是坐标原点)的面积S=
4
5
,求直线AB的方程.
分析:(1)由题意|MC|+|MA|=|MC|+|MQ|=|CQ|=4>2
3
,所以轨迹E是以A,C为焦点,长轴长为4的椭圆,由此能求出轨迹E的方程.
(2)记A(x1,y1),B(x2,y2),设AB:x=my+1,由
x2+4y2=4
x=my+1
,得:(4+m2)y2+2my-3=0,由此能求出直线AB的方程.
解答:(1)解:(1)由题意|MC|+|MA|=|MC|+|MQ|=|CQ|=4>2
3

所以轨迹E是以A,C为焦点,长轴长为4的椭圆,…(2分)
即轨迹E的方程为
x2
4
+y2=1
.…(4分)
(2)解:记A(x1,y1),B(x2,y2),
由题意,直线AB的斜率不可能为0,
故可设AB:x=my+1,
x2+4y2=4
x=my+1
,消x得:(4+m2)y2+2my-3=0,
所以
y1+y2=
-2m+
4m2+12(4+m2)
2(4+m2)
+
-2m-
4m2+12(4+m2)
2(4+m2)
=
-2m
4+m2
y1y2=
-2m+
4m2+12(4+m2)
2(4+m2)
-2m-
4m2+12(4+m2)
2(4+m2)
=-
3
4+m2
…(7分)
S=
1
2
|OP||y1-y2|=
1
2
(y1+y2)2-4y1y2
=
2
m2+3
m2+4
.…(9分)
S=
4
5
,解得m2=1,即m=±1.…(10分)
故直线AB的方程为x=±y+1,
即x+y-1=0或x-y-1=0为所求.…(12分)
点评:本题考查轨迹方程的求法和直线方程的求法,考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O的半径为1,圆心为(2,3),P为x轴上的动点,PA,PB为该圆的两条切线,A,B为两切点,则
PA
PB
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4,圆O与x轴交于A,B两点,过点B的圆的切线为l,P是圆上异于A,B的一点,PH垂直于x轴,垂足为H,E是PH的中点,延长AP,AE分别交l于F,C.
(1)若点P(1,
3
),求以FB为直径的圆的方程,并判断P是否在圆上;
(2)当P在圆上运动时,证明:直线PC恒与圆O相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4,动点P(t,0)(-2≤t≤2),曲线C:y=3|x-t|.曲线C与圆O相交于两个不同的点M,N
(1)若t=1,求线段MN的中点P的坐标;
(2)求证:线段MN的长度为定值;
(3)若t=
43
,m,n,s,p均为正整数.试问:曲线C上是否存在两点A(m,n),B(s,p)(11),使得圆O上任意一点到点A的距离与到点B的距离之比为定值k(k>1)?若存在请求出所有的点A,B;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆O:(x+
3
)2+y2=16,点A(
3
,0)
,Q是圆上一动点,AQ的垂直平分线交OQ于点M,设点M的轨迹为E.
(I)求轨迹E的方程;
(Ⅱ)过点P(1,0)的直线l交轨迹E于两个不同的点A、B,△AOB(O是坐标原点)的面积S=
4
5
,求直线AB的方程.

查看答案和解析>>

同步练习册答案