精英家教网 > 高中数学 > 题目详情

【题目】某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气后,测得车库内的一氧化碳浓度为,继续排气,又测得浓度为,经检测知该地下车库一氧化碳浓度与排气时间存在函数关系:为常数)。

(1)求的值;

(2)若地下车库中一氧化碳浓度不高于为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?

【答案】(1)(2)

【解析】

(1)分别代入,列方程组可解得,从而可得.

(2) 由(1)知,然后利用指数函数的单调性解不等式即可得到.

(1)由题意,可得方程组,解得

(2)由(1)知

由题意,可得

,即 ,解得

所以至少排气 ,这个地下车库中的一氧化碳含量才能达到正常状态。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当 取得极值的值

(Ⅱ)当函数有两个极值点总有 成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为坐标原点,点F为抛物线C1的焦点,且抛物线C1上点P处的切线与圆C2相切于点Q.

当直线PQ的方程为时,求 抛物线C1的方程;

当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求的取值范围;

(Ⅱ)证明:当时,关于的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有三个乡镇,分别位于一个矩形的两个顶点MN的中点S处,,现要在该矩形的区域内(含边界),且与MN等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为

1)设,试将L表示为x的函数并写出其定义域;

2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且.

1)当(其中,且t为常数)时,是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;

2)当时,求满足不等式的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,则数字2019在表中出现的次数为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图象在处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)若函数存在单调递减区间,求实数的取值范围;

(Ⅲ)设()是函数的两个极值点,若,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,.

(Ⅰ)求证:平面平面

(Ⅱ)试问在线段上是否存在一点,使锐二面角的余弦值为.若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案