精英家教网 > 高中数学 > 题目详情
如图,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:AC⊥平面BB1C1C;
(2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
证明:(1)直棱柱ABCD-A1B1C1D1中,BB1⊥平面ABCD,∴BB1⊥AC.(2分)
又∵∠BAD=∠ADC=90°,AB=2AD=2CD=2,
AC=
2
,∠CAB=45°,∴BC=
2
,∴BC⊥AC.(4分)
又BB1∩BC=B,BB1,BC?平面BB1C1C,∴AC⊥平面BB1C1C.(7分)

(2)存在点P,P为A1B1的中点.(8分)
证明:由P为A1B1的中点,有PB1‖AB,且PB1=
1
2
AB.(10分)
又∵DC‖AB,DC=
1
2
AB,∴DCPB1,且DC=PB1
∴DCB1P为平行四边形,从而CB1DP.
又CB1?面ACB1,DP?面ACB1,∴DP‖面ACB1.(12分)
同理,DP‖面BCB1.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P为平行四边形ABCD外一点,且PD⊥平面ABCD,M为PC中点.
(1)求证:AP平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面是直角梯形,ABDC,∠DAB=90°,
PA⊥底面ABCD,PA=AD=DC=
1
2
AB=1,M是PB的中点.
(1)求证:CM平面PAD;
(2)求证:BC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足
PE
=
1
3
PD

(1)求证:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体AC′中,AB=AC=a,BB′=b(b>a),连接BC′,过点B′作B′E⊥BC′交CC′于E.
(1)求证:AC′⊥平面EB′D′;
(2)求三棱锥C′-B′D′E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,AC⊥BC,D是棱AA1的中点,AA1=2AC=2BC=2a(a>0).
(1)证明:C1D⊥平面BDC;
(2)求三棱锥C-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,A-BCDE是一个四棱锥,AB⊥平面BCDE,且四边形BCDE为矩形,则图中互相垂直的平面共有(  )
A.4组B.5组C.6组D.7组

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四边形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A'-BCD,使平面A'BD⊥平面BCD,则下列结论正确的是(  )
A.A'C⊥BD
B.∠BA'C=90°
C.△A'DC是正三角形
D.四面体A'-BCD的体积为
1
3

查看答案和解析>>

同步练习册答案