精英家教网 > 高中数学 > 题目详情

f(x)=数学公式


  1. A.
    奇函数
  2. B.
    偶函数
  3. C.
    非奇非偶函数
  4. D.
    既是奇函数又是偶函数
B
分析:当x≥0时,f(x)=ex-2,然后检验f(-x)与f(x)的关系,当x<0时,f(x)=e-x-2,然后检验f(-x)与f(x)的关系
解答:当x≥0时,f(x)=ex-2,则f(-x)=e-(-x)-2=ex-2=f(x)
当x<0时,f(x)=e-x-2,则f(-x)=e-x-2=f(x)
综上可得,f(x)=f(-x),即函数f(x)为偶函数
故选B
点评:本题主要考查了分段函数的函数奇偶性的判断,属于基本方法的简单应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数. 当a,b∈[-1,1],且a+b≠0时,有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判断函f(x)的单调性,并证明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是


  1. A.
    ①③
  2. B.
  3. C.
    ②③
  4. D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山西省晋中市平遥中学高二(下)期中数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是( )

A.①③
B.②
C.②③
D.①

查看答案和解析>>

同步练习册答案