精英家教网 > 高中数学 > 题目详情
6.求直线x+y-3=0关于点A(2,3)的对称直线的方程.

分析 设直线x+y-3=0关于A(2,3)对称直线上任意一点P(x,y),则P(x,y)关于A(2,3)的对称点(4-x,6-y)在直线x+y-3=0上,代入即可得出.

解答 解:设直线x+y-3=0关于A(2,3)对称直线上任意一点P(x,y),
则P(x,y)关于A(2,3)的对称点(4-x,6-y)在直线x+y-3=0上,
∴4-x+6-y-3=0,
化为x+y-7=0.
故要求的直线方程为:x+y-7=0.

点评 本题考查了直线关于点的对称直线的求法、中点坐标公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=1,b1=2,a2+b3=10,a3+b2=7.
(1)求数列{an},{bn}的通项公式;
(2)设数列{bn}的前n项和为Sn,记${c_n}=(1+\frac{S_n}{2})•{a_n},n∈{N^*}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,求证:a2=b2+c2-2bc•cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sin(3π-α)=$\sqrt{2}$sin(6π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),且0<α<π,0<β<π,求α和β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=(m-2)x2-(m-1)x+5是偶函数,则f(x)的递增区间为(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各组的两个函数,表示同一个函数的是(  )
A.y=$\frac{{x}^{2}}{x}$与y=xB.y=$\frac{x}{{x}^{2}}$与y=$\frac{1}{x}$C.y=|x|与y=xD.y=$(\sqrt{x})^{2}$与y=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tanα=7,求$\frac{sinα+cosα}{2sinα-cosα}$+sin2α+sinαcosα+3cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an},{bn}的前n项和分别为Sn,Tn,其中an=2n-1,bn=$\frac{1}{{S}_{n}}$,设计算法求T100的值,并画出程序框图及编写程序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校的教育教学水平不断提高,该校记录了2006年到2015年十年间每年考入清华大学、北京大学的人数和.为方便计算,2006年编号为1,2007年编号为2,…,2015年编号为10.数据如下:
年份(x)12345678910
人数(y)35811131417223031
(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;
(Ⅱ)根据前5年的数据,利用最小二乘法求出y关于x的回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并计算2013年的估计值和实际值之间的差的绝对值.
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案