精英家教网 > 高中数学 > 题目详情

【题目】某工厂拟建一座平面图为矩形,面积为,高度一定的三段污水处理池(如图),由于受地形限制,其长、宽都不超过,如果池的外壁的建造费单价为,池中两道隔壁墙(与宽边平行)的建造费单价为,池底的建造费单价为.设水池的长为,总造价为.

1)求的表达式;

2)水池的长与宽各是多少时,总造价最低,并求出这个最低造价.

【答案】1;(2)水池长为,宽为,最低造价为.

【解析】

1)水池长为,可得其宽为,由其长、宽都不超过可求得的取值范围,根据题意可得出函数的表达式;

2)利用基本不等式可求得函数的最小值,利用等号成立的条件可求得水池的长与宽,进而得解.

1)水池的长为,则宽为,由题意可得,解得

2

当且仅当,即时取等号,此时,.

因此,当水池长为,宽为,其总造价最低,最低造价为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记函数的定义域为D. 如果存在实数使得对任意满

x恒成立,则称函数.

1)设函数,试判断是否为函数,并说明理由;

2)设函数,其中常数,证明: 函数;

3)若是定义在上的函数,且函数的图象关于直线m为常数)对称,试判断是否为周期函数?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若上单调递减,求的取值范围;

(2)当时,判断关于的方程的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)若,求的单调区间;

(2)求函数上的最值;

(3)当时,若函数恰有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADBCADCD,且ADCD=2BC=4PA=2.

(1)求证:ABPC

(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点一个焦点为的椭圆被直线截得的弦的中点的横坐标为.

(1)求此椭圆的方程;

(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为面积的最大值及此时直线的方程.

查看答案和解析>>

同步练习册答案