【题目】某工厂拟建一座平面图为矩形,面积为,高度一定的三段污水处理池(如图),由于受地形限制,其长、宽都不超过,如果池的外壁的建造费单价为元,池中两道隔壁墙(与宽边平行)的建造费单价为元,池底的建造费单价为元.设水池的长为,总造价为.
(1)求的表达式;
(2)水池的长与宽各是多少时,总造价最低,并求出这个最低造价.
科目:高中数学 来源: 题型:
【题目】记函数的定义域为D. 如果存在实数、使得对任意满
足且的x恒成立,则称为函数.
(1)设函数,试判断是否为函数,并说明理由;
(2)设函数,其中常数,证明: 是函数;
(3)若是定义在上的函数,且函数的图象关于直线(m为常数)对称,试判断是否为周期函数?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,一个焦点为的椭圆被直线截得的弦的中点的横坐标为.
(1)求此椭圆的方程;
(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为,求面积的最大值及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com