精英家教网 > 高中数学 > 题目详情

【题目】关于函数,下列说法正确的是(

A.是函数的零点,则的整数倍

B.函数的图象关于点对称

C.函数的图象与函数的图象相同

D.函数的图象可由的图象先向上平移个单位长度,再向左平移个单位长度得到

【答案】BC

【解析】

首先由三角恒等变换化简函数解析式,作出图象,数形结合判断A错误;由正弦函数的对称性可判断函数的对称性;利用三角函数诱导公式可判断C选项;根据三角函数图象变换规则可判断D选项.

画出函数的图象,如图所示:

的图象与轴相邻的两个交点的距离不相等,且不为,故A错;

因为,所以函数的图象关于对称,则函数的图象关于点对称,故B正确;

函数,故C正确;

函数的图象可由先向上平移个单位,再向左平移个单位长度得到,故D错误.

故选:BC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Snann-3成立.

(1)求证:存在实数λ使得数列{anλ}为等比数列;

(2)求数列{nan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,对任意的正整数,都有成立,记.

1)求数列与数列的通项公式;

2)记,设数列的前项和为,求证:对任意正整数,都有

3)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,与餐饮美食相关的手机软件层出不穷,现从某市使用两款订餐软件的商家中分别随机抽取100个商家,对它们的平均送达时间进行统计,得到频率分布直方图如下:

1)使用订餐软件的商家中平均送达时间不超过30分钟的商家有多少个?

2)试估计该市使用款订餐软件的商家的平均送达时间的众数及中位数;

3)如果以平均送达时间的平均数作为决策依据,从两款订餐软件中选择一款订餐,你会选择哪款?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是(

A.中,若,则

B.在锐角三角形中,不等式恒成立

C.中,若,则为等腰直角三角形

D.中,若,三角形面积,则三角形外接圆半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月,举世瞩目的中国共产党第十九次全国代表大会在北京顺利召开.某高中为此组织全校2000名学生进行了一次“十九大知识知多少”的问卷测试(满分:100分),并从中抽取了40名学生的测试成绩,得到了如图所示的频率分布直方图.

(1)求图中实数的值及样本中40名学生测试成绩的平均数和中位数(同一组中的数据用该组区间的中点值作代表);

(2)(i)利用分层抽样的方法从成绩低于70分的三组学生中抽取7人,再从这7人中随机抽取2人分析成绩不理想的原因,求前2组中至少有1人被抽到的概率;

(2)以频率估计概率,试估计该校这次测试成绩不低于80分的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数其图象上相邻两个最高点之间的距离为

1的值;

2将函数的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到的图象,求上的单调增区间;

32的条件下,求方程内所有实根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在中,内角对边的边长分别是,已知.()若的面积等于,求)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线C:x2=2py (p>0) 的焦点,点A(m,3)在抛物线C上,且|AF|=5,若点P是抛物线C上的一个动点,设点P到直线的距离为,设点P到直线的距离为

(1)求抛物线C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

同步练习册答案