精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在它们的交点处具有相同的切线.

1)求的解析式;

2)若函数有两个极值点,且,求的取值范围.

【答案】1;(2

【解析】

1)求得两个函数的导数,由公切线的斜率相同可得的方程;将切点代入两个函数,可得的方程;联立两个方程即可求得的值,进而得的解析式;

2)将的解析式代入并求得,由极值点定义可知是方程的两个不等实根,由韦达定理表示出,结合可得.代入中化简,分离参数并构造函数,求得并令求得极值点,由极值点两侧符号判断单调性,并求得最小值,代入端点值求得最大值,即可求得的取值范围.

1)根据题意,函数

可知

两图象在点处有相同的切线,

所以两个函数切线的斜率相等,即,化简得

代入两个函数可得

综合上述两式可解得

所以.

2)函数,定义域为

因为为函数的两个极值点,

所以是方程的两个不等实根,

由根与系数的关系知

又已知,所以

式代入得

,令,解得

时,单调递减;

时,单调递增;

所以

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:(1是偶函数;(2是偶函数;(3的最小值为;(4有两个零点;其中真命题的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为,且中只有一个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点在抛物线上,直线与抛物线C交于AB两点,且直线OAOB的斜率之和为

1)求ak的值;

2)若,设直线y轴交于D点,延长MD与抛物线C交于点N,抛物线C在点N处的切线为n,记直线nx轴围成的三角形面积为S.求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,大学决定考核只有合格和优秀两个等次,若某志愿者考核合格,授予个学分;考核优秀,授予个学分,假设该大学志愿者甲、乙、丙考核优秀的概率为.他们考核所得的等次相互独立.

1)求在这次考核中,志愿者甲、乙、丙三人中至少一名考核为优秀的概率;

2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若函数上有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱锥P-ABCD中,PA平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求证:BCPC

(2)PB与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中.

1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程;

3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

同步练习册答案