精英家教网 > 高中数学 > 题目详情
已知关于x的不等式|x-3|+|x-4|<a.
(1)当a=2时,解上述不等式;
(2)如果关于x的不等式|x-3|+|x-4|<a的解集为空集,求实数a的取值范围.
分析:(1)先分类讨论,根据x的范围先去掉绝对值然后再根据绝对值不等式的解法进行求解.
(2)作出y=|x-3|+|x-4|与y=a的图象,使|x-3|+|x-4|<a解集为空集只须y=|x-3|+|x-4|图象在y=a的图象的上方,从而求出a的范围;
解答:精英家教网解:(1)原不等式|x-3|+|x-4|<2
当x<3时,原不等式化为7-2x<2,解得x>
5
2
,∴
5
2
<x<3

当3≤x≤4时,原不等式化为1<2,∴3≤x≤4
当x>4时,原不等式化为2x-7<2,解得x<
9
2
,∴4<x<
9
2

综上,原不等式解集为{x|
5
2
<x<
9
2
}
;(5分)
(2)法一、作出y=|x-3|+|x-4|与y=a的图象,
若使|x-3|+|x-4|<a解集为空集只须y=|x-3|+|x-4|图象在y=a的图象的上方,
或y=a与y=1重合,∴a≤1
所以,a的范围为(-∞,1],(10分)
法二、:y=|x-3|+|x-4|=
2x-7x≥4
13≤x≤4
7-2xx<3

当x≥4时,y≥1
当3≤x<4时,y=1
当x<3时,y>1
综上y≥1,原问题等价为a≤[|x-3|+|x-4|]min
∴a≤1(10分)
法三、:∵|x-3|+|x-4|≥|x-3-x+4|=1,
当且仅当(x-3)(x-4)≤0时,上式取等号
∴a≤1.
点评:此题考查绝对值不等式的解法,运用了分类讨论的思想,解题的关键是去掉绝对值,此类题目是高考常见的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式ax2-2ax+x-2<0
(1)当a=3时,求此不等式解集;
(2)当a<0时,求此不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-5:不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,(1)求实数a的取值范围.(2)证明:若x-1<0,则a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式(a+b)x+(2a-3b)<0的解集是{x|x>3},则不等式(a-3b)x+(b-2a)>0的解集是
{x|x>
1
3
}
{x|x>
1
3
}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)已知关于x的不等式x2+mx-2<0解集为(-1,2).
(1)求实数m的值;
(2)若复数z1=m+2i,z2=cosα+isinα,z1•z2为纯虚数,求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,已知两圆交于A、B两点,过点A、B的直线分别与两圆交于P、Q和M、N.求证:PM∥QN.
B.(矩阵与变换)
已知矩阵A的逆矩阵A-1=
10
02
,求矩阵A.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,过椭圆
x2
12
+
y2
4
=1
在第一象限处的一点P(x,y)分别作x轴、y轴的两条垂线,垂足分别为M、N,求矩形PMON周长最大值时点P的坐标.
D.(不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案