精英家教网 > 高中数学 > 题目详情

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3
B.4
C.5
D.6

【答案】B
【解析】解:模拟执行程序,可得
a=4,b=6,n=0,s=0
执行循环体,a=2,b=4,a=6,s=6,n=1
不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2
不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3
不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4
满足条件s>16,退出循环,输出n的值为4.
故选:B.
模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数.

(Ⅰ)当时,解不等式

(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;

(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内三个向量:.

(Ⅰ)若,求实数的值;

(Ⅱ)设,且满足,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示

(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知标有1~20号的小球20,若我们的目的是估计总体号码的平均值,20个小球号码的平均值.试验者从中抽取4个小球,以这4个小球号码的平均值估计总体号码的平均值,按下面方法抽样(按小号到大号排序):

(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.

(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于利用斜二侧法得到的直观图有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( )

A. ①② B. C. ③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积(m2).

(1)求关于的函数关系式;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, .

(Ⅰ)证明:

(Ⅱ)平面 平面 ,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案