精英家教网 > 高中数学 > 题目详情
若二次函数f(x)=ax2+bx+c有f(x1)=f(x2),(x1≠x2)则f(x1+x2)=
c
c
分析:在二次函数中,由f(x1)=f(x2),(x1≠x2),得到x1,x2关于对称轴x=-
b
2a
对称,把x1+x2用含有a,b的代数式表示,代入二次函数解析式化简即可得到答案.
解答:解:由二次函数f(x)=ax2+bx+c,且满足f(x1)=f(x2)(x1≠x2),则x1,x2关于对称轴x=-
b
2a
对称,
因此x1+x2=-
b
a

∴f(x1+x2)=f(-
b
a
)=a(-
b
a
)2+b(-
b
a
)+c
=
b2
a
-
b2
a
+c=c

故答案为:c.
点评:本题考查了二次函数的性质,考查了二次函数的对称性,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2-4x+c的值域为[0,+∞),则
a
c2+4
+
c
a2+4
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=x2+bx+c满足f(2)=f(-2),且函数的f(x)的一个零点为1.
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ)对任意的x∈[
12
,+∞)
,4m2f(x)+f(x-1)≥4-4m2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f (x)=ax2+bx+c(a≠0)的部分对应值如下所示:
x -2 1 3
f (x) 0 -6 0
则不等式f (x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2+bx+1(a,b为实数且x∈R).
(1)若函数f(x)为偶函数,且满足f(x)=2x有两个相等实根,求a,b的值;
(2)若f(-1)=0,且函数f(x)的值域为[0,+∞),求函数f(x)的表达式;
(3)在(2)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若二次函数f(x)=ax2+bx的导函数f′(x)的图象如图所示,则二次函数f(x)的顶点在(  )
A、第四象限B、第三象限C、第二象限D、第一象限

查看答案和解析>>

同步练习册答案