精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+1(x∈R),a,b∈R.函数f(x)的图象在点P(1,f(1))处的切线方程为y=x+4.
(I)求函数f(x)的解析式;
(II)若函数f(x)在区间(k,k+
23
)
上是单调函数,求实数k的取值范围.
分析:(I)求出导函数,令导函数在1处的值为1,函数经过(1,f(1)),列出方程组求出a,b的值,得到函数的解析式.
(Ⅱ)求出函数的导数,通过导数为0,求出函数的极值点,求出函数的单调区间,推出k的范围即可.
解答:解:(I)函数f(x)=x3+ax2+bx+1(x∈R),a,b∈R.函数f(x)的图象在点P(1,f(1))处的切线方程为y=x+4.
所以f′(x)=3x2+2ax+b,所以f′(1)=3+2a+b=1…①,函数经过(1,f(1)),即:5=1+a+b+1…②;
解①②得:a=-5,b=8;
所以函数的解析式为:f(x)=x3-5x2+8x+1.
(Ⅱ)由(1)可知f′(x)=3x2-10x+8,令3x2-10x+8=0,即x=2,x=
4
3
,当x
4
3
时函数是增函数,
4
3
≤x≤2
时函数是减函数,x>2时,函数是增函数,函数f(x)在区间(k,k+
2
3
)
上是单调函数,
所以k
2
3
或k=
4
3
或k≥2时,满足题意.
点评:本题是中档题,考查函数的导数的应用,函数的切线方程的应用,函数的单调性与单调区间的求法,考查计算能力,转化思想.常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案