(07年上海卷理)(18分)
若有穷数列(是正整数),满足即(是正整数,且),就称该数列为“对称数列”。
(1)已知数列是项数为7的对称数列,且成等差数列,,试写出的每一项
(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?
(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和
科目:高中数学 来源: 题型:
(07年上海卷理)已知是定义域为正整数集的函数,对于定义域内任意的,若 成立,则成立,下列命题成立的是
A、若成立,则对于任意,均有成立;
B、若成立,则对于任意的,均有成立;
C、若成立,则对于任意的,均有成立;
D、若成立,则对于任意的,均有成立。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com