精英家教网 > 高中数学 > 题目详情
6.已知圆C的方程为x2+y2=4;
(1)设过点P(1,1)的直线1被圆C截得的弦长等于2$\sqrt{3}$,求直线1的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

分析 (1)由圆的方程求出圆心的坐标及半径,由直线被圆截得的弦长,利用垂径定理得到弦的一半,弦心距及圆的半径构成直角三角形,再根据勾股定理求出弦心距,一下分两种情况考虑:若此弦所在直线方程的斜率不存在,显然x=1满足题意;若斜率存在,设出斜率为k,由直线过P点,由P的坐标及设出的k表示出直线的方程,利用点到直线的距离公式表示出圆心到所设直线的距离d,让d等于求出的弦心距列出关于k的方程,求出方程的解得到k的值,进而得到所求直线的方程.
(2)MN平分∠ANB,kAN=-kNB,利用韦达定理,可得结论.

解答 解:(1)由圆的方程,得到圆心坐标为(0,0),半径r=2,
∵直线被圆截得的弦长为2$\sqrt{3}$,
∴弦心距为1
若此弦所在的直线方程斜率不存在时,显然x=1足题意;
若此弦所在的直线方程斜率存在,设斜率为k,
∴所求直线的方程为y-1=k(x-1)即kx-y-k+1=0
圆心到所设直线的距离d=$\frac{|-k+1|}{\sqrt{{k}^{2}+1}}$=1,得:k=0
此时所求方程为y-1=0
综上,此弦所在直线的方程为x=1或y-1=0.
(2)直线斜率不存在时,x轴正半轴上任意一点都满足;
斜率存在时,设方程为x=my+1,代入x2+y2=4可得(1+m2)y2+2my-3=0,
设N(t,0),A(x1,y1),B(x2,y2),则y1+y2=-$\frac{2m}{1+{m}^{2}}$,y1y2=-$\frac{3}{1+{m}^{2}}$
∵MN平分∠ANB,
∴kAN=-kNB
∴y2(x1-t)+y1(x2-t)=0,
∴y2(my1+2-t)+y1(my2+2-t)=0,
∴2my1y2+(2-t)(y1+y2)=0,
∴2m•(-$\frac{3}{1+{m}^{2}}$)+(2-t)×(-$\frac{2m}{1+{m}^{2}}$)=0,
∴2m(t-5)=0,
∴t=5,即N(5,0),MN平分∠ANB.

点评 此题考查了直线与圆相交的性质,考查韦达定理的运用,考查学生的计算能力,涉及的知识有垂径定理,勾股定理,点到直线的距离公式,以及直线的斜截式方程,利用了分类讨论的思想,当直线与圆相交时,常常由弦心距,弦的一半及圆的半径构造直角三角形,利用勾股定理来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.曲线$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=4的四个顶点连结而成的四边形面积是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\sqrt{x+1}$,则f(0)等于(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的内角为A、B、C的所对的边分别为a,b,c,且A、B、C成等差数列.且△ABC的面积为4$\sqrt{3}$,则2a+3c的最小值为8$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,F1,F2分别为椭圆的左右焦点,A,B分别为椭圆的左右顶点,点P为椭圆上异于A,B的动点.
(1)求证:直线PA、PB的斜率之积为定值;
(2)设D(1,0),求|PD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校组织高一学生对所在市的居民中拥有电视机、电冰箱、组合音响的情况进行一次抽样调查,调查结果:3户特困户三种全无;有一种的:电视机1090户,电冰箱747户,组合音响850户;有两种的:电视机、组合音响570户,组合音响、电冰箱420户,电视机、电冰箱520户;“三大件”都有的265户.调查组的同学在统计上述数字时,发现没有记下被调查的居民总户数,你能避免重新调查而解决这个问题吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知c≠0,且a,b,c,2b成等差数列,则$\frac{a}{c}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-6x2+3x+t,h(x)=ex,t∈R.F(x)=f(x)•h(x)
(Ⅰ)求函数f(x)的单调减区间.
(Ⅱ)若函数F(x) 依次在x=a,x=b,x=c(a<b<c)处取到极值.求t的取值范围;
(Ⅲ)若a+c=2b2,①求t的值.  ②若存在实数t∈[0,2],使对任意的x∈[1,m],不等式 F(x)≤x恒成立.求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ln(1+x)+ln(1-x),则f(x)是(  )
A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数

查看答案和解析>>

同步练习册答案