精英家教网 > 高中数学 > 题目详情

已知函数(其中为常数).

(1)如果函数有相同的极值点,求的值;

(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.

(3)记函数,若函数有5个不同的零点,求实数的取值范围.

 

(1);(2);(3).

【解析】

试题分析:本题主要考查导数的运算、利用导数求函数的极值和最值、利用导数判断函数的单调性、求函数的零点等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,对求导,得到有2个根,而处有极大值,所以那2个根分别等于,得到a的值;第二问,假设存在使得,将代入得到解析式,由于,所以将问题转化成了存在,使得,分类讨论,讨论抛物线的对称轴和区间端点的大小,数形结合,得到结论;第三问,已知条件中有5个不同的零点,根据解析式的特点,知有3个不同的实根,有2个不同的实根,通过抛物线的图形可知要使有2个不同的实根,只需,而,通过第一问得到的极值点,讨论2个数的3种大小关系,结合图象,确定a的取值范围,a的取值范围需保证同时成立,还得保证这5个根互不相等.

试题解析:(1),则

,得,而处有极大值,

;综上:. 3分

(2)假设存在,即存在,使得

时,又,故,则存在,使得

, 4分

时,

5分

时,, 6分

无解;综上:. 7分

(3)据题意有有3个不同的实根,有2个不同的实根,且这5个实根两两不相等.\(ⅰ)有2个不同的实根,只需满足; 8分

(ⅱ)有3个不同的实根,

时,处取得极大值,而,不符合题意,舍; 9分

时,不符合题意,舍;

时,处取得极大值,;所以; 10分

因为(ⅰ)(ⅱ)要同时满足,故;(注:也对) 11分

下证:这5个实根两两不相等,即证:不存在使得同时成立.

若存在使得

,即,得

时,,不符合,舍去;

时,既有 ①;

又由,即 ②; 联立①②式,可得

而当时,没有5个不

同的零点,故舍去,所以这5个实根两两不相等.

综上,当时,函数有5个不同的零点. 14分

考点:导数的运算、利用导数求函数的极值和最值、利用导数判断函数的单调性、求函数的零点.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省广州市毕业班综合测试二文科数学试卷(解析版) 题型:选择题

是等差数列的前项和,公差,若,若,则正整数的值为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题

已知双曲线的右焦点与抛物线焦点重合,则此双曲线的渐近线方程是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)理科数学试卷(解析版) 题型:填空题

已知集合A={x|x2-2x-3>0 },B={x|ax2+bx+c≤0},若A∩B={x|3<x≤4},

A∪B=R,则的最小值为____.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)理科数学试卷(解析版) 题型:选择题

给出下列三个结论:

(1)若命题为假命题,命题为假命题,则命题“”为假命题;

(2)命题“若,则”的否命题为“若,则”;

(3)命题“”的否定是“ ”.则以上结论正确的个数为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:解答题

设函数,其中向量

(1)求的单调递增区间;

(2)在中,分别是角的对边,已知的面积为,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:选择题

已知,动点满足,则点到点的距离大于的概率为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三4月统一质量检测考试理科数学试卷(解析版) 题型:填空题

已知,以为邻边的平行四边形的面积为,则的夹角为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省高三12月月考理科数学试卷(解析版) 题型:填空题

已知奇函数满足,且当时, ,则的值为

 

查看答案和解析>>

同步练习册答案