精英家教网 > 高中数学 > 题目详情

【题目】设甲、乙、丙三个羽毛球协会的运动员人数分别为18918,先采用分层抽样的方法从这三个协会中抽取5名运动员参加比赛.

1)求应从这三个协会中分别抽取的运动员人数;

2)将抽取的5名运动员进行编号,编号分别为,从这5名运动员中随机抽取2名参加双打比赛. 编号为的两名运动员至少有一人被抽到为事件A,求事件A发生的概率.

【答案】12,1,2 2.

【解析】

1)根据分层抽样方法确定抽取人数;

2)先确定从这5名运动员中随机抽取2名参加双打比赛总事件数,再确定事件A所包含事件数,最后根据古典概型概率公式求结果.

1)从这三个协会中分别抽取的运动员人数分别为2,1,2

2)从这5名运动员中随机抽取2名参加双打比赛共有10种基本事件,其中编号为的两名运动员都不选的事件有3个,因此事件A所包含事件数为7,从而所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则( )

A.抽出的3件中恰好有1件是不合格品的抽法有

B.抽出的3件中恰好有1件是不合格品的抽法有

C.抽出的3件中至少有1件是不合格品的抽法有

D.抽出的3件中至少有1件是不合格品的抽法有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥

B.四棱锥的四个侧面都可以是直角三角形

C.有两个平面互相平行,其余各面都是梯形的多面体是棱台

D.棱台的各侧棱延长后不一定交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中, ,其前项和为,等比数列的各项均为正数, ,且 .

(1)求数列的通项公式;

(2)令,设数列的前项和为,求)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD是梯形,AB//CDDAABBCSC,SA=AD=3,AB=6,点E在棱SD上,且VS-ACE=2VE-ACD

(1)求证:BC⊥平面SAC

(2)求二面角S-AE-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中有2个红球,4个白球.

1)从中取出3个球,求取到红球个数的概率分布及数学期望;

2)每次取1个球,取出后记录颜色并放回袋中.

①若取到第二次红球就停止试验,求第5次取球后试验停止的概率;

②取球4次,求取到红球个数的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,变量增加一个单位时,平均增加个单位;

③线性回归方程必过);

④在一个列联表中,由计算得,则有以上的把握认为这两个变量间有关系.

其中错误的个数是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是使得解析式有意义的x集合,如果对于定义域内的任意实数x,函数值均为正,则称此函数为“正函数”.

1)证明函数是“正函数”;

2)如果函数不是“正函数”,求正数a的取值范围.

3)如果函数是“正函数”,求正数a的取值范围.

查看答案和解析>>

同步练习册答案