精英家教网 > 高中数学 > 题目详情

【题目】给定椭圆.称圆心在原点O,半径为的圆是椭圆C准圆.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为

(1)求椭圆C的方程和其准圆方程;

(2)P是椭圆C准圆上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

【答案】(Ⅰ)(Ⅱ)垂直.

【解析】

试题(1)由椭圆C的一个焦点为,其短轴上的一个端点到F的距离为知:从而可得椭圆的标准方程和准圆的方程;

2)分两种情况讨论:当中有一条直线斜率不存在;直线斜率都存在.

对于可直接求出直线的方程并判断其是不互相垂直;

对于设经过准圆上点与椭圆只有一个公共点的直线为

与椭圆方程联立组成方程组消去得到关于的方程:

化简整理得:

而直线的斜率正是方程的两个根,从而

1

椭圆方程为

准圆方程为

2当中有一条无斜率时,不妨设无斜率,

因为与椭圆只有一个共公点,则其方程为

方程为时,此时与准圆交于点

此时经过点(或)且与椭圆只有一个公共眯的直线是(或

(或),显然直线垂直;

同理可证方程为时,直线也垂直.

都有斜率时,设点其中

设经过点与椭圆只有一个公共点的直线为

则由消去,得

化简整理得:

因为,所以有

的斜率分别为,因为与椭圆只有一个公共点

所以满足上述方程

所以,即垂直,

综合①②,垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

(1)若将频率是为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)

(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.

方案:不分类卖出,单价为.

方案:分类卖出,分类后的水果售价如下:

等级

标准果

优质果

精品果

礼品果

售价(元/kg)

16

18

22

24

从采购单的角度考虑,应该采用哪种方案?

(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过A53),B44)两点,且圆心在x轴上.

1)求圆C的标准方程;

2)若直线l过点(52),且被圆C所截得的弦长为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市疾控中心流感监测结果显示,自月起,该市流感活动一度出现上升趋势,尤其是月以来呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复假设某班级已知位同学中有位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染.下面是两种化验方法: 方案甲:逐个化验,直到能确定感染同学为止;

方案乙:先任取个同学,将它们的血液混在一起化验若结果呈阳性则表明感染同学为这位中的位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外位同学中逐个检测;

(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;

(2)表示依方案甲所需化验次数,表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,其中,数列满足:

1)当时,求的值;

2)证明:对任意均成立,并求数列的通项公式;

3)是否存在正数,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)当时,关于的不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定直线my=2x16,抛物线Cy2=axa>0.

1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;

2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD是梯形,AB∥DC,AD⊥DC,AB=AD=2,DC=3,平面PDC⊥平面ABCD,E在棱PC上且PE=2EC。

()证明:BE∥平面PAD;

(1)若ΔPDC是正三角形,求三棱锥P-DBE的体积。

查看答案和解析>>

同步练习册答案