分析 由已知条件分别求出BD、A1D、AD,AA1,由此能求出正三棱柱ABC-A1B1C1的侧面积.
解答 解:∵正三棱柱ABC-A1B1C1,D是AC的中点,∠α=30°,∠BDA1=90°,AB=a,
∴BD=$\sqrt{{a}^{2}-(\frac{1}{2}a)^{2}}$=$\frac{\sqrt{3}}{2}a$,A1D=$\frac{\frac{\sqrt{3}}{2}a}{tan30°}$=$\frac{3}{2}a$,AD=$\frac{1}{2}a$,
$A{A}_{1}=\sqrt{(\frac{3}{2}a)^{2}-(\frac{1}{2}a)^{2}}$=$\sqrt{2}a$,
∴正三棱柱ABC-A1B1C1的侧面积:
S=3×(a×$\sqrt{2}$a)=$3\sqrt{2}{a}^{2}$.
点评 本题考查棱柱的侧面积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(0,\frac{1}{2})$ | B. | (0,4] | C. | (-∞,-1]∪(4,+∞) | D. | (-1,4)?? |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x1+x2>|a+1|1.1 | |
B. | x1+x2<|a+1|1.1 | |
C. | x1+x2=|a+1|1.1 | |
D. | x1+x2与|a+1|1.1的大小关系无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com