精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣1|+|3x﹣ |.
(1)求不等式f(x)<1的解集;
(2)若实数a,b,c满足a>0,b>0,c>0且a+b+c= .求证: + +

【答案】
(1)解:由f(x)<1,得|x﹣1|+|3x﹣ |<1可化为:

<x<

所以f(x)<1的解集为:{x| <x< }


(2)解:因为a+b+c=

所以: +a+ +b+ +c≥2(a+b+c)=3,

所以: + +


【解析】(1)通过讨论x的范围求出不等式的解集即可;(2)根据基本不等式的性质证明即可.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱中,侧面为菱形,底面是等腰直角三角形,C.

(1)求证:直线直线

(2)若直线与底面ABC成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,若对任意,总存在,使,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在上的函数满足,且是奇函数,现给出下列4个结论:①是周期为4的周期函数;

的图象关于点对称;

是偶函数;

的图象经过点,其中正确结论的序号是__________(请填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某风景区水面游览中心计划国庆节当日投入之多3艘游船供游客观光,过去10年的数据资料显示每年国庆节当日客流量X(单位:万人)都大于1,并把客流量分成三段整理得下表:

国庆节当日客流量X

1<X<3

3≤X≤5

X>5

频数

2

4

4

以这10年的数据资料记录的隔断客流量的频率作为每年客流量在隔断发生的概率,且每年国庆节当日客流量相互独立.
(1)求未来连续3年国庆节当日中,恰好有1年国庆节当日客流量超过5万人的概率;
(2)该水面游览中心希望投入的游船尽可能使用,但每年国庆节当日游船最多使用量:(单位:艘)受当日客流量X(单位:万人)的限制,其关联关系如下表:

国庆节当日客流量X

1<X<3

3≤X≤5

X>5

游船最多使用量

1

2

3

若某艘游船国庆节当日使用,则水面游览中心国庆节当日可获得利润3万元,若某艘游船国庆节当日不使用,则水面游览中心国庆节当日亏损0.5万元,记Y(单位:万元)表示该水面游览中心国庆节当日获得总利润,当Y的数学期望最大时称水面游览中心在国庆节当日效益最佳,问该水面游览中心的国庆节当日应投入多少艘游船才能使该水面游览中心在国庆节当日效益最佳?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为a的正方形,PA⊥平面ABCD.

(1)PA=AB,EPC的中点,求直线AE与平面PCD所成角的正弦值;

(2)BEPC且交点为E,BE=a,GCD的中点,线段AB上是否存在点F,使得EF∥平面PAG?若存在,AF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C截直线y=1所得线段的长度为2

(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在三棱锥中,分别是的中点,

(1) 求证:平面

(2) 求异面直线所成角的余弦值;

(3) 求点到平面的距离。

查看答案和解析>>

同步练习册答案