精英家教网 > 高中数学 > 题目详情

【题目】Sn为数列{an}的前n项和,已知,对任意nN*,都有2Sn=(n+1an

1)求数列{an}的通项公式;

2)若数列的前项和为Tn,求Tn的取值范围.

【答案】1an=2n2

【解析】

1)在2Sn=(n+1an中,将可得:2Sn1=(n+11an1,两式作差可得:,对赋值,再利用累乘法计算可得:,问题得解。

2)利用(1)中结论,整理可得:,利用裂项求和可得:,问题得解。

解:(1Sn为数列{an}的前n项和,已知,对任意nN*

都有2Sn=(n+1an.①

n≥2时,2Sn1=(n+11an1.②

①﹣②得:

则:

所以:

整理得:an=2n(首项符合通项),

故:an=2n

2)由已知条件:

故:

时,

故:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=mxα的图象经过点A(2,2).

(1)试比较2ln f(3)与3ln f(2)的大小;

(2)定义在R上的函数g(x)满足g(-x)=g(x), g(4+x)=g(4-x),且当x∈[0,4]时,

. 若关于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151个整数解,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,ABBCBABCBD是边AC上的高,沿BDABC折起,当三棱锥ABCD的体积最大时,该三棱锥外接球表面积为(  )

A. 12πB. 24πC. 36πD. 48π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+kx+2y+k20,过点P1,﹣1)可作圆的两条切线,则实数k的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中 1:= =

Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:

受培时间一年以上

受培时间不足一年

总计

收入不低于平均值

60

20

收入低于平均值

10

20

总计

100

完成上表,并回答:能否在犯错概率不超过0.05的前提下认为收入与接受培训时间有关系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有唯一零点,则a=

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P—ABC中,△PBC为等边三角形,点O为BC的中点,AC⊥PB,平面PBC⊥平面ABC.

(1)求直线PB和平面ABC所成的角的大小;

(2)求证:平面PAC⊥平面PBC;

(3)已知E为PO的中点,F是AB上的点,AF=AB.若EF∥平面PAC,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进行理科、文科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.

分组

频数

频率

分组

频数

频率

[135,150]

8

0.08

[135,150]

4

0.04

[120,135)

17

0.17

[120,135)

18

0.18

[105,120)

40

0.4

[105,120)

37

0.37

[90,105)

21

0.21

[90,105)

31

0.31

[75,90)

12

0. 12

[75,90)

7

0.07

[60,75)

2

0.02

[60,75)

3

0.03

总计

100

1

总计

100

1

理科 文科

(Ⅰ)根据数学成绩的频率分布表,求文科数学成绩的中位数的估计值;(精确到0.01)

(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

数学成绩120分

数学成绩<120分

合计

理科

文科

合计

200

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案