A. | (-2,3) | B. | (-3,-2)∪(3,+∞) | C. | (-3,3) | D. | (-∞,-3)∪(2,3) |
分析 利用函数奇偶性和单调性之间的关系得到不等式f(x)>0和f(x)<0的解,然后将不等式(x-2)•f(x)<0转化为:$\left\{\begin{array}{l}{x-2>0}\\{f(x)<0}\end{array}\right.$①或$\left\{\begin{array}{l}{x-2<0}\\{f(x)>0}\end{array}\right.$②进行求解.
解答 解:∵f(x)是偶函数,且在[0,+∞)内是增函数,
∴f(x)在(-∞,0]内是减函数,
∵f(-3)=-f(3)=0,
∴f(3)=0.
则f(x)对应的图象如图:
则不等式(x-2)•f(x)<0等价为:$\left\{\begin{array}{l}{x-2>0}\\{f(x)<0}\end{array}\right.$①或$\left\{\begin{array}{l}{x-2<0}\\{f(x)>0}\end{array}\right.$②
由①得2<x<3.
由②得x<-3.
综上:2<x<3或x<-3.
故不等式的解集为:(-∞,-3)∪(2,3),
故选D.
点评 本题主要考查函数奇偶性和单调性之间的关系的应用,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3x}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com