Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
.
10
02
.
£¬N=
.
1
2
0
01
.
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
t
y=-1-
3
5
t
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®
·ÖÎö£ºAÏȸù¾ÝÌõ¼þµÃµ½DP2=DB•DC£»½ø¶øµÃµ½¡÷BDP¡×¡÷PDC¼´¿ÉµÃµ½½áÂÛ£»
B ÏÈÇó³öMN£¬ÔÙÉ裨x£¬y£©ÊÇÇúÏßy=sinxÉϵÄÈÎÒâÒ»µã£¬ÔÚ¾ØÕóMN±ä»»Ï¶ÔÓ¦µÄµãΪ£¨a£¬b£©£®¸ù¾Ý¾ØÕó±ä»»µÃµ½¼´
x=2a
y=
1
2
b
£¬ÔÙ´úÈëÔ­º¯Êý¼´¿ÉµÃµ½½áÂÛ£®
C °ÑÇúÏߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¿ÉµÃ·Ö±ð±íʾԲºÍÒ»ÌõÖ±Ïߣ¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÏÒÐľ࣬×îºó½áºÏÏÒ³¤¹«Ê½¼´¿ÉµÃµ½½áÂÛ£®
D ·ÖÇé¿öÈ¥¾ø¶ÔÖµ£¬·Ö±ðÇó½â¼´¿É£®
½â´ð£ºÑ¡×öÌâ
A£®Ö¤Ã÷£ºÒòΪPAÓëÔ²ÏàÇÐÓÚA£¬
ËùÒÔDA2=DB•DC£¬¡­£¨2·Ö£©
ÒòΪDΪPAÖе㣬ËùÒÔDP=DA£¬
ËùÒÔDP2=DB•DC£¬¼´
PD
DC
=
DB
PD
£® ¡­£¨5·Ö£©
ÒòΪ¡ÏBDP=¡ÏPDC£¬ËùÒÔ¡÷BDP¡×¡÷PDC£¬¡­£¨8·Ö£©
ËùÒÔ¡ÏDPB=¡ÏDCP£®                  ¡­£¨10·Ö£©
B£®MN=
.
10
02
.
.
1
2
0
01
.
=
.
1
2
0
02
.
£¬¡­£¨4·Ö£©
É裨x£¬y£©ÊÇÇúÏßy=sinxÉϵÄÈÎÒâÒ»µã£¬ÔÚ¾ØÕóMN±ä»»Ï¶ÔÓ¦µÄµãΪ£¨a£¬b£©£®
Ôò
.
1
2
0
02
.
.
x 
y 
.
=
.
a 
b 
.
£¬ËùÒÔ
a=
1
2
x
b=2y
¼´
x=2a
y=
1
2
b
       ¡­£¨8·Ö£©
´úÈëy=sinxµÃ£º
1
2
b=sin2a£¬¼´b=2sin2a£®
¼´ÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³ÌΪy=2sin2x£®  ¡­£¨10·Ö£©
C£®ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=
2
cos£¨¦È+
¦Ð
4
£©=cos¦È-sin¦È£¬
»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx2+y2-x+y=0£¬¼´£¨x-
1
2
£©2+£¨y+
1
2
£©2=
1
2
£®¡­£¨3·Ö£©
Ö±ÏßL£º
x=1+
4
5
t
y=-1-
3
5
t
£¬£¨tΪ²ÎÊý£©¿É»¯Îª3x+4y+1=0£¬¡­£¨6·Ö£©
Ô²Ðĵ½Ö±ÏߵľàÀëd=
|3¡Á
1
2
-4¡Á
1
2
+1|
5
=
1
10
£¬¡­£¨8·Ö£©
ÏÒ³¤L=2
R2-d2
=
7
5
£®£®¡­£¨10·Ö£©
D£®µ±x¡Ý4ʱ£¬2x+1-x+4£¼2£¬½âµÃx£¼-3£¨ÉáÈ¥£©£»¡­£¨3·Ö£©
µ±-
1
2
¡Üx£¼4ʱ£¬2x+1+x-4£¼2£¬½âµÃx£¼
5
3
£¬¡à-
1
2
¡Üx£¼
5
3
£»¡­£¨6·Ö£©
µ±x£¼-
1
2
ʱ£¬-2x-1+x-4£¼2£¬½âµÃx£¾-7£¬¡à-7£¼x£¼-
1
2
£®¡­£¨9·Ö£©
×ÛÉÏ£¬²»µÈʽµÄ½â¼¯Îª£¨-7£¬
5
3
£©£®¡­£¨10·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬¼òµ¥µÄ¾ØÕóÔËËãºÍ¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¡¾Ñ¡×öÌâ¡¿ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
21-1£®£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
ÉèMÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìѹ±ä»»£®
£¨1£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨2£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²
x2
4
+
y2
9
=1ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
21-2£®£¨Ñ¡ÐÞ4-4£º²ÎÊý·½³Ì£©
ÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣮÒÑÖªµãPµÄÖ±½Ç×ø±êΪ£¨1£¬-5£©£¬µãMµÄ¼«×ø±êΪ£¨4£¬
¦Ð
2
£©£¬ÈôÖ±Ïßl¹ýµãP£¬ÇÒÇãб½ÇΪ 
¦Ð
3
£¬Ô²CÒÔMΪԲÐÄ¡¢4Ϊ°ë¾¶£®
£¨1£©ÇóÖ±Ïßl¹ØÓÚtµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÊÔÅж¨Ö±ÏßlºÍÔ²CµÄλÖùØϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÑOµÄ°ë¾¶OB´¹Ö±ÓÚÖ±¾¶AC£¬MΪAOÉÏÒ»µã£¬BMµÄÑÓ³¤Ïß½»¡ÑOÓÚN£¬¹ý
NµãµÄÇÐÏß½»CAµÄÑÓ³¤ÏßÓÚP£®
£¨1£©ÇóÖ¤£ºPM2=PA•PC£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2
3
£¬OA=
3
OM£¬ÇóMNµÄ³¤£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÇúÏßx2+4xy+2y2=1ÔÚ¶þ½×¾ØÕóM=
.
1a
b1
.
µÄ×÷ÓÃϱ任ΪÇúÏßx2-2y2=1£¬ÇóʵÊýa£¬bµÄÖµ£»
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
y=-1-
3
5
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éèa£¬b£¬c¾ùΪÕýʵÊý£®
£¨1£©Èôa+b+c=1£¬Çóa2+b2+c2µÄ×îСֵ£»
£¨2£©ÇóÖ¤£º
1
2a
+
1
2b
+
1
2c
¡Ý
1
b+c
+
1
c+a
+
1
a+b
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨B£©£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=8£¬Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e=
1
1
£¬²¢ÇÒ¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³Éµã£¨-2£¬4£©£¬Çó¾ØÕóM2£®
£¨C£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÊÔÔÚÇúÏßCÉÏÒ»µãM£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×î´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

 Ñ¡×öÌ⣨ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬²¢½«Ñ¡×÷±ê¼ÇÓÃ2BǦ±ÊÍ¿ºÚ£¬Ã¿Ð¡Ìâ10·Ö£¬¹²20·Ö£¬ÇëÔÚ´ðÌâÖ¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩£®
A¡¢£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬BDΪ¡ÑOµÄÖ±¾¶£¬AB=AC£¬AD½»BCÓÚE£¬ÇóÖ¤£ºAB2=AE•AD
B¡¢£¨Ñ¡ÐÞ4-2£º¾ØÐÎÓë±ä»»£©
ÒÑÖªa£¬bʵÊý£¬Èç¹û¾ØÕóM=
1a
b2
Ëù¶ÔÓ¦µÄ±ä»»½«Ö±Ïß3x-y=1±ä»»³Éx+2y=1£¬Çóa£¬bµÄÖµ£®
C¡¢£¨Ñ¡ÐÞ4-4£¬£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÉèM¡¢N·Ö±ðÊÇÇúÏߦÑ+2sin¦È=0ºÍ¦Ñsin£¨¦È+
¦Ð
4
£©=
2
2
ÉϵĶ¯µã£¬ÅжÏÁ½ÇúÏßµÄλÖùØϵ²¢ÇóM¡¢N¼äµÄ×îС¾àÀ룮
D¡¢£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£ºa+b+c£¾
ab
+
bc
+
ca
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ADÊÇ¡ÏBACµÄƽ·ÖÏߣ¬¡ÑO¹ýµãAÇÒÓëBC±ßÏàÇÐÓÚµãD£¬ÓëAB¡¢AC·Ö±ð½»ÓÚE£¬F£¬ÇóÖ¤£ºEF¡ÎBC£®

B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa£¬b¡ÊRÈô¾ØÕóM=
.
-1a
b3
.
Ëù¶ÔÓ¦µÄ±ä»»°ÑÖ±Ïßl£º2x-y=3±ä»»Îª×ÔÉí£¬Çóa£¬bµÄÖµ£®

C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½«²ÎÊý·½³Ì
x=2(t+
1
t
)
y=4(t-
1
t
)
£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªa£¬bÊÇÕýÊý£¬ÇóÖ¤£º£¨a+
1
b
£©£¨2b+
1
2a
£©¡Ý
9
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸