精英家教网 > 高中数学 > 题目详情

【题目】小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有三个木桩,木桩上套有编号分别为的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为( )

A. B. C. D.

【答案】B

【解析】

假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.

假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.

,得,对比

所以,数列是以为首项,以为公比的等比数列,

,因此,,故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为 ,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(Ⅰ)若函数上存在零点,求实数的取值范围;

(Ⅱ)若函数处的切线方程为.求证:对任意的,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

为了预测印刷千册时每册的成本费建立了两个回归模型.

(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中的模型选择,求关于的回归方程并预测印刷千册时每册的成本费.

附:对于一组数据,…,其回归方程的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为.上的定点,上的两动点,且线段的中点在直线.

(Ⅰ)求曲线的方程及的值;

(Ⅱ)记的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士帕斯卡的著作(1655年)介绍了这个三角形,近年来,国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”,如图.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”,如图.在杨辉三角中,相邻两行满足关系式:,其 中是行数,.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A{x|2x2ax20}B{x|x23x2a0},且AB{2}

(1)a的值及集合AB

(2)设全集UAB,求(UA)(UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上为增函数,求的取值范围;

(2)若函数有两个不同的极值点,记作,且,证明:为自然对数).

查看答案和解析>>

同步练习册答案